终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025年中考数学一轮复习讲与练第四章第六讲 尺规作图(考点精析+真题精讲)(2份,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      2025年中考数学一轮复习讲与练第4章第六讲 尺规作图(考点精析+真题精讲)(原卷版).docx
    • 解析
      2025年中考数学一轮复习讲与练第4章第六讲 尺规作图(考点精析+真题精讲)(解析版).docx
    2025年中考数学一轮复习讲与练第4章第六讲 尺规作图(考点精析+真题精讲)(原卷版)第1页
    2025年中考数学一轮复习讲与练第4章第六讲 尺规作图(考点精析+真题精讲)(原卷版)第2页
    2025年中考数学一轮复习讲与练第4章第六讲 尺规作图(考点精析+真题精讲)(原卷版)第3页
    2025年中考数学一轮复习讲与练第4章第六讲 尺规作图(考点精析+真题精讲)(解析版)第1页
    2025年中考数学一轮复习讲与练第4章第六讲 尺规作图(考点精析+真题精讲)(解析版)第2页
    2025年中考数学一轮复习讲与练第4章第六讲 尺规作图(考点精析+真题精讲)(解析版)第3页
    还剩9页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025年中考数学一轮复习讲与练第四章第六讲 尺规作图(考点精析+真题精讲)(2份,原卷版+解析版)

    展开

    这是一份2025年中考数学一轮复习讲与练第四章第六讲 尺规作图(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第4章第六讲尺规作图考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第4章第六讲尺规作图考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
    第6讲尺规作图
    →➊考点精析←
    →➋真题精讲←
    考向一尺规作平行线
    考向二尺规作角平分线
    考向三尺规作垂直平分线
    考向四尺规作全等三角形
    考向五尺规作相似三角形
    第6讲尺规作图
    →➊考点精析←
    一、尺规作图
    1.尺规作图的定义:在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.
    2.五种基本作图
    1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.
    3.根据基本作图作三角形
    1)已知三角形的三边,求作三角形;2)已知三角形的两边及其夹角,求作三角形;
    3)已知三角形的两角及其夹边,求作三角形;4)已知三角形的两角及其中一角的对边,求作三角形;
    5)已知直角三角形一直角边和斜边,求作直角三角形.
    4.与圆有关的尺规作图
    1)过不在同一直线上的三点作圆(即三角形的外接圆);2)作三角形的内切圆.
    5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.
    6.作图题的一般步骤
    (1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.
    其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.
    二、尺规作图的方法
    1.尺规作图的关键
    1)先分析题目,读懂题意,判断题目要求作什么;2)读懂题意后,再运用几种基本作图方法解决问题.
    2.根据已知条件作等腰三角形或直角三角形
    求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.
    尺规作图是指用没有刻度的直尺和圆规作图。尺规作图可以作出许多基本图形,如线段、角、等腰三角形、矩形、正方形、正五边形、正六边形等。
    一、平行线的尺规作法:
    已知直线 a 和直线外一点 A,过点 A 作已知直线的平行线 b。
    1.用直尺以点 A 为圆心,适当长为半径画弧,交直线 a 于点 C 和点 D。
    2.分别以点 C、D 为圆心,大于二分之一 CD 的长为半径画弧,两弧相交于点 E。
    3.连接 AE,并延长 AE 交直线 b 于点 B。
    4.直线 AB 就是所求作的平行线。
    已知直线 a 和直线外一点 A,过点 A 作已知直线的平行线 b。
    1.用直尺以点 A 为圆心,适当长为半径画弧,交直线 a 于点 C 和点 D。
    2.分别以点 C、D 为圆心,大于二分之一 CD 的长为半径画弧,两弧相交于点 E。
    3.连接 AE,并延长 AE 交直线 b 于点 B。
    4.直线 AB 就是所求作的平行线。
    原理:以上两种方法都是利用了同位角相等,两直线平行的原理。
    二、角平分线的尺规作法:
    以已知角顶点为圆心,以适当长为半径画弧,交角的两边于点 M,N。
    分别以点 M,N 为圆心,大于二分之一 MN 的长为半径画弧,两弧相交于点 P。
    连接 AP,交角的另一边于点 B。
    射线 BP 就是所求作的角平分线。
    原理:角平分线上的点到角两边的距离相等。
    三、垂直平分线的尺规作法:
    已知线段 AB,作线段 AB 的垂直平分线。
    1.分别以点 A,B 为圆心,大于二分之一 AB 的长为半径画弧,两弧相交于点 C,D。
    2.连接 CD,则 CD 就是线段 AB 的垂直平分线。
    原理:线段垂直平分线上的点到线段两端点的距离相等。
    四、全等三角形的尺规作法:
    已知线段 a,b,求作线段 AB,使线段 AB 等于线段 a 加线段 b。
    1.作射线 AM。
    2.在射线 AM 上截取线段 AC 等于线段 a。
    3.在射线 CM 上截取线段 CB 等于线段 b。
    4.连接线段 AB。
    则线段 AB 就是所求作的线段,且线段 AB 等于线段 a 加线段 b。
    原理:两点之间线段最短。
    五、相似三角形的尺规作法:
    已知线段 a,b,求作线段 AB,使线段 AB 等于线段 a 乘线段 b。
    1.作射线 AM。
    2.在射线 AM 上截取线段 AC 等于线段 a。
    3.在射线 CM 上截取线段 CB 等于线段 b。
    4.连接线段 AB。
    则线段 AB 就是所求作的线段,且线段 AB 等于线段 a 乘线段 b。
    原理:在比例中,两个外项的积等于两个内项的积。
    →➋真题精讲←
    题型一尺规作平行线
    1.(2022•东海县二模)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )
    A.B.C.D.
    2.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.
    (1)在图1中作出矩形ABCD的对称轴m,使m∥AB;
    (2)在图2中作出矩形ABCD的对称轴n,使n∥AD.
    题型二尺规作角平分线
    3.(2023•辽宁)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于12EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )
    A.35B.34C.43D.53
    4.(2022•辽宁)如图,OG平分∠MON,点A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于12CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为( )
    A.35°B.45°C.55°D.65°
    5.(2023•沈阳)如图,直线AB∥CD,直线EF分别与AB,CD交于点E,F,小明同学利用尺规按以下步骤作图:
    (1)以点E为圆心,以任意长为半径作弧交射线EB于点M,交射线EF于点N;
    (2)分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧在∠BEF内交于点P;
    (3)作射线EP交直线CD于点G;
    若∠EGF=29°,则∠BEF= 度.
    6.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是( )
    A.BD=BCB.AD=BDC.∠ADB=108°D.CD=12AD
    7.(2023·湖南·统考中考真题)如图,在中,,按以下步骤作图:①以点为圆心,以小于长为半径作弧,分别交于点,;②分别以,为圆心,以大于的长为半径作弧,在内两弧交于点;③作射线,交于点.若点到的距离为,则的长为__________.
    8.(2021•无锡模拟)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹).
    9.(2023•鄂州)如图,点E是矩形ABCD的边BC上的一点,且AE=AD.
    (1)尺规作图(请用2B铅笔):作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);
    (2)试判断四边形AEFD的形状,并说明理由.
    10.(2023·江苏苏州·统考中考真题)如图,在中,为的角平分线.以点圆心,长为半径画弧,与分别交于点,连接.

    (1)求证:;
    (2)若,求的度数.
    题型三尺规作垂直平分线
    11.(2023•辽宁)如图,在△ABC中,AB=AC,∠CAB=30°,BC=32,按以下步骤作图:①分别以点A和点B为圆心,大于12AB长为半径作弧,两弧相交于E,F两点;②作直线EF交AB于点M,交AC于点N,连接BN,则AN的长为( )​
    A.2+3B.3+3C.23D.33
    12.(2022•锦州)如图,在矩形ABCD中,AB=6,BC=8,分别以点A和C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和N,作直线MN分别交AD,BC于点E,F,则AE的长为( )
    A.74B.94C.154D.254
    13.(2022•黄石)如图,在△ABC中,分别以A,C为圆心,大于12AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=2cm,△ABD的周长为11cm,则△ABC的周长为( )
    A.13cmB.14cmC.15cmD.16cm
    14.(2023•随州)如图,在▱ABCD中,分别以B,D为圆心,大于12BD的长为半径画弧,两弧相交于点M,N,过M,N两点作直线交BD于点O,交AD,BC于点E,F,下列结论不正确的是( )
    A.AE=CFB.DE=BFC.OE=OFD.DE=DC
    15.(2022•恩施州)如图,在矩形ABCD中,连接BD,分别以B、D为圆心,大于12BD的长为半径画弧,两弧交于P、Q两点,作直线PQ,分别与AD、BC交于点M、N,连接BM、DN.若AD=4,AB=2.则四边形MBND的周长为( )
    A.52B.5C.10D.20
    16.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于12AO的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是( )
    A.23B.4C.6D.32
    17.(2023·重庆·统考中考真题)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:
    用直尺和圆规,作的垂直平分线交于点E,交于点F,垂足为点O.(只保留作图痕迹)

    已知:如图,四边形是平行四边形,是对角线,垂直平分,垂足为点O.
    求证:.
    证明:∵四边形是平行四边形,
    ∴.
    ∴ ① .
    ∵垂直平分,
    ∴ ② .
    又___________③ .
    ∴.
    ∴.
    小虹再进一步研究发现,过平行四边形对角线中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:
    过平行四边形对角线中点的直线 ④ .
    题型四尺规作全等三角形
    18.(2023·福建·统考中考真题)阅读以下作图步骤:
    ①在和上分别截取,使;
    ②分别以为圆心,以大于的长为半径作弧,两弧在内交于点;
    ③作射线,连接,如图所示.
    根据以上作图,一定可以推得的结论是( )

    A.且B.且
    C.且D.且
    题型五尺规作相似三角形
    19.(2023•湖北)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为( )
    A.10B.11C.23D.4

    相关试卷

    2025年中考数学一轮复习讲与练第七章第一讲 视图与投影(考点精析+真题精讲)(2份,原卷版+解析版):

    这是一份2025年中考数学一轮复习讲与练第七章第一讲 视图与投影(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第7章第一讲视图与投影考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第7章第一讲视图与投影考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    2025年中考数学一轮复习讲与练第四章第五讲 几何测量问题(考点精析+真题精讲)(2份,原卷版+解析版):

    这是一份2025年中考数学一轮复习讲与练第四章第五讲 几何测量问题(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第4章第五讲几何测量问题考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第4章第五讲几何测量问题考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    2025年中考数学一轮复习讲与练第四章第一讲 直线与角(考点精析+真题精讲)(2份,原卷版+解析版):

    这是一份2025年中考数学一轮复习讲与练第四章第一讲 直线与角(考点精析+真题精讲)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第4章第一讲直线与角考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第4章第一讲直线与角考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map