所属成套资源:【讲通练透】2025年新高考数学一轮复习(新教材,含2024高考真题)
- 第07讲 离散型随机变量及其分布列、数字特征(六大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考) 课件 1 次下载
- 第十章 计数原理、概率、随机变量及其分布(测试)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 1 次下载
- 重难点突破02 线性代数背景下新定义(四大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 1 次下载
- 重难点突破03 高等背景下概率论新定义(七大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 2 次下载
- 重难点突破04 初等数论与平面几何背景下新定义(六大题型)-2025年高考数学一轮复习讲练测(新教材新高考) 试卷 1 次下载
重难点突破01 高等数学定理背景下新定义(六大题型)-2025年高考数学一轮复习讲练测(新教材新高考)
展开
这是一份重难点突破01 高等数学定理背景下新定义(六大题型)-2025年高考数学一轮复习讲练测(新教材新高考),文件包含重难点突破01高等数学定理背景下新定义六大题型原卷版docx、重难点突破01高等数学定理背景下新定义六大题型解析版docx等2份试卷配套教学资源,其中试卷共105页, 欢迎下载使用。
\l "_Tc178500282" 01 方法技巧与总结 PAGEREF _Tc178500282 \h 2
\l "_Tc178500283" 02 题型归纳与总结 PAGEREF _Tc178500283 \h 4
\l "_Tc178500284" 题型一:泰勒公式 PAGEREF _Tc178500284 \h 4
\l "_Tc178500285" 题型二:极大值点的第二充分条件定理 PAGEREF _Tc178500285 \h 6
\l "_Tc178500286" 题型三:帕德逼近 PAGEREF _Tc178500286 \h 8
\l "_Tc178500287" 题型四:罗尔中值定理、拉格朗日中值定理、柯西中值定理 PAGEREF _Tc178500287 \h 9
\l "_Tc178500288" 题型五:伯努利、琴生不等式 PAGEREF _Tc178500288 \h 11
\l "_Tc178500289" 题型六:微积分、洛必达 PAGEREF _Tc178500289 \h 14
\l "_Tc178500290" 03 过关测试 PAGEREF _Tc178500290 \h 17
1、泰勒公式有如下特殊形式:当在处的阶导数都存在时,.注:表示的2阶导数,即为的导数,表示的阶导数,该公式也称麦克劳林公式.
2、【极值点第二充分条件】已知函数在处二阶可导,且
(1)若,则在处取得极小值;
(2)若,则在处取得极大值.
3、帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数在处的阶帕德近似定义为:,且满足:,,,…,.(注:,,,,…;为的导数).
4、拉格朗日中值定理又称拉氏定理:如果函数在上连续,且在上可导,则必有,使得.
5、罗尔定理描述如下:如果 上的函数满足以下条件:①在闭区间上连续,②在开区间内可导,③,则至少存在一个,使得.
6、微积分
知识卡片1:一般地,如果函数在区间上连续,用分点将区间等分成个小区间,在每个小区间上任取一点,作和式(其中为小区间长度),当时,上述和式无限接近某个常数,这个常数叫做函数在区间上的定积分,记作即.这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式.从几何上看,如果在区间上函数连续且恒有,那么定积分表示由直线和曲线所围成的曲边梯形的面积.
知识卡片2:一般地;如果是区间上的连续函数,并且,那么.这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.
知识卡片3:在微积分中,求极限有一种重要的数学工具——洛必达法则,法则中有结论:若函数,的导函数分别为,,且,则
.
7、伯努利不等式(Bernulli’sInequality),又称贝努利不等式,是高等数学的分析不等式中最常见的一种不等式,由瑞士数学家雅各布·伯努利提出:对实数,在时,有不等式成立;在时,有不等式成立.
8、设连续函数的定义域为,如果对于内任意两数,都有,则称为上的凹函数;若,则称为凸函数.若是区间上的凹函数,则对任意的,有琴生不等式恒成立(当且仅当时等号成立).
题型一:泰勒公式
【典例1-1】英国数学家泰勒发现了如下公式:,其中,此公式有广泛的用途,例如利用公式得到一些不等式:当时,,,(解答本题时,这些不等式根据需要可以直接使用).
(1)证明:当时,;
(2)设,若区间满足:当定义域为时,值域也为,则称区间为的“和谐区间”.试问是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由.
【典例1-2】(2024·安徽·一模)给出以下三个材料:
①若函数可导,我们通常把导函数的导数叫做的二阶导数,记作.类似的,函数的二阶导数的导数叫做函数的三阶导数,记作,函数的三阶导数的导数叫做函数的四阶导数……,一般地,函数的阶导数的导数叫做函数的n阶导数,记作,;
②若,定义;
③若函数在包含的某个开区间上具有任意阶的导数,那么对于任意有,我们将称为函数在点处的泰勒展开式.
例如在点处的泰勒展开式为
根据以上三段材料,完成下面的题目:
(1)求出在点处的泰勒展开式;
(2)用在点处的泰勒展开式前三项计算的值,精确到小数点后4位;
(3)现已知,试求的值.
【变式1-1】(2024·广西·模拟预测)英国数学家泰勒发现了如下公式:,以上公式成为泰勒公式.设,,根据以上信息,并结合所学的数学知识,解决如下问题.
(1)证明:;
(2)设,证明:;
(3)设,若是的极小值点,求实数的取值范围.
【变式1-2】18世纪早期英国牛顿学派最优秀代表人物之一的数学家泰勒(Brk Taylr)发现的泰勒公式(又称麦克劳林公式)有如下特殊形式:当在处的阶导数都存在时,.其中,f″x表示的二阶导数,即为f'x的导数,表示的阶导数.
(1)根据公式估计的值;(结果保留两位有效数字)
(2)由公式可得:,当时,请比较与的大小,并给出证明;
(3)已知,证明:.
【变式1-3】英国数学家泰勒(B. Taylr,1685-1731)以发现泰勒公式和泰勒级数闻名于世.由泰勒公式,我们能得到(其中e为自然对数的底数,),其拉格朗日余项是可以看出,右边的项用得越多,计算得到的e的近似值也就越精确.若近似地表示e的泰勒公式的拉格朗日余项不超过时,正整数n的最小值是 .
【变式1-4】英国数学家布鲁克泰勒,以发现泰勒公式和泰勒级数而闻名于世.根据泰勒公式,我们可知:如果函数在包含的某个开区间上具有阶导数,那么对于,有,其中,(此处介于和之间).
若取,则,其中,(此处介于0和之间)称作拉格朗日余项.此时称该式为函数在处的阶泰勒公式,也称作的阶麦克劳林公式.
于是,我们可得(此处介于0和1之间).若用近似的表示的泰勒公式的拉格朗日余项,当不超过时,正整数的最小值是( )
A.B.C.D.
题型二:极大值点的第二充分条件定理
【典例2-1】(2024·高二·陕西咸阳·阶段练习)给出定义:设是函数的导函数,是函数的导函数,若方程有实数解,则称为函数的“拐点”.经研究发现所有的三次函数都有“拐点”,且该“拐点”也是函数图象的对称中心.
(1)若函数,求函数图象的对称中心;
(2)已知函数,其中.
(ⅰ)求的拐点;
(ⅱ)若,求证:.
【典例2-2】(2024·高二·广东东莞·阶段练习)记,为的导函数.若对,,则称函数为D上的“凸函数”.已知函数,.
(1)若函数为上的凸函数,求a的取值范围;
(2)若函数在上有极值,求a的取值范围.
【变式2-1】(2024·上海普陀·一模)若函数同时满足下列两个条件,则称在上具有性质.
①在上的导数存在;
②在上的导数存在,且(其中)恒成立.
(1)判断函数在区间上是否具有性质?并说明理由.
(2)设、均为实常数,若奇函数在处取得极值,是否存在实数,使得在区间上具有性质?若存在,求出的取值范围;若不存在,请说明理由.
(3)设且,对于任意的,不等式成立,求的最大值.
题型三:帕德逼近
【典例3-1】帕德近似是法国数学家亨利帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数在处的阶帕德近似定义为:,且满足:,,,…,.(注:,,,,…;为的导数).
(1)求函数在处的阶帕德近似函数;
(2)在(1)的条件下,试比较与的大小;
(3)在(1)的条件下,若在上存在极值,求m的取值范围.
【典例3-2】帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,,函数在处的阶帕德近似定义为:,且满足:.(注:,为的导数)已知在处的阶帕德近似为.
(1)求实数的值;
(2)证明:当时,;
(3)设为实数,讨论方程的解的个数.
【变式3-1】给定两个正整数,,函数在x=0处的阶帕德近似定义为:,且满足:,,.已知在x=0处的阶帕德近似注:,,,,…
(1)求,,的值;
(2)比较的大小,并说明理由;
(3)求不等式的解集,其中
【变式3-2】帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法,给定两个正整数m,n,函数在处的阶帕德近似定义为:,且满足:,,…,(注:,,,,…,为的导数)已知在处的阶帕德近似为.
(1)求实数a,b的值,并估计的近似值(保留三位小数);
(2)求证:;
(3)求不等式的解集,其中.
题型四:罗尔中值定理、拉格朗日中值定理、柯西中值定理
【典例4-1】(2024·安徽六安·模拟预测)罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,其他两个分别为:拉格朗日中值定理、柯西中值定理.罗尔定理描述如下:如果 上的函数满足以下条件:①在闭区间上连续,②在开区间内可导,③,则至少存在一个,使得.据此,解决以下问题:
(1)证明方程在内至少有一个实根,其中;
(2)已知函数在区间内有零点,求的取值范围.
【典例4-2】(2024·高三·陕西安康·开学考试)定理:如果函数在闭区间上的图象是连续不断的曲线,在开区间内每一点存在导数,且,那么在区间内至少存在一点,使得这是以法国数学家米歇尔·罗尔的名字命名的一个重要定理,称之为罗尔定理,其在数学和物理上有着广泛的应用.
(1)设,记的导数为,试用上述定理,说明方程根的个数,并指出它们所在的区间;
(2)如果在闭区间上的图象是连续不断的曲线,且在开区间内每一点存在导数,记的导数为,试用上述定理证明:在开区间内至少存在一点,使得;
(3)利用(2)中的结论,证明:当时,.(e为自然对数的底数)
【变式4-1】利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数表示成的形式.
(1)若,,,,,把的二次项系数表示成关于f的函数,并求的值域(此处视e为给定的常数,答案用e表示);
(2)若,,,,求证:.
【变式4-2】(2024·江苏盐城·模拟预测)根据多元微分求条件极值理论,要求二元函数在约束条件的可能极值点,首先构造出一个拉格朗日辅助函数,其中为拉格朗日系数.分别对中的部分求导,并使之为0,得到三个方程组,如下:
,解此方程组,得出解,就是二元函数在约束条件的可能极值点.的值代入到中即为极值.
补充说明:【例】求函数关于变量的导数.即:将变量当做常数,即:,下标加上,代表对自变量x进行求导.即拉格朗日乘数法方程组之中的表示分别对进行求导.
(1)求函数关于变量的导数并求当处的导数值.
(2)利用拉格朗日乘数法求:设实数满足,求的最大值.
(3)①若为实数,且,证明:.
②设,求的最小值.
题型五:伯努利、琴生不等式
【典例5-1】(2024·山东潍坊·三模)一个完美均匀且灵活的项链的两端被悬挂, 并只受重力的影响,这个项链形成的曲 线形状被称为悬链线.1691年,莱布尼茨、惠根斯和约翰・伯努利等得到“悬链线”方程 ,其中为参数.当时,就是双曲余弦函数,类似地双曲正弦函数 ,它们与正、余弦函数有许多类似的性质.
(1)类比三角函数的三个性质:
①倍角公式 ;
②平方关系 ;
③求导公式
写出双曲正弦和双曲余弦函数的一个正确的性质并证明;
(2)当时,双曲正弦函数图象总在直线的上方,求实数的取值范围;
(3)若,证明:
【典例5-2】伯努利不等式又称贝努力不等式,由著名数学家伯努利发现并提出.伯努利不等式在证明数列极限、函数的单调性以及在其他不等式的证明等方面都有着极其广泛的应用.伯努利不等式的一种常见形式为:当时,,当且仅当或时取等号.
(1)假设某地区现有人口万,且人口的年平均增长率为,以此增长率为依据,试判断年后该地区人口的估计值是否能超过万?
(2)数学上常用表示,,,的乘积,.
①证明:;
②数列,满足:,,证明:.
【变式5-1】自然常数是自然对数的底数,是极为重要的常数,通常称为欧拉数.它的发现和研究跨越了多个世纪,涉及了众多数学家的贡献,从雅各布·伯努利的早期工作到莱昂哈德·欧拉的深入研究,再到现代数学家对其性质的进一步探索,充分展现了数学知识的积累和发展,以及数学精神的传承.瑞士数学家雅各布·伯努利于1683年通过研究复利首先发现,即是数列的极限.
(1)证明:;
(2)已知函数.
①若,证明:;
②讨论的极值点的个数.
【变式5-2】临沂一中校本部19、20班数学小组在探究函数的性质时,发现通过函数的单调性、奇偶性和周期性,还无法准确地描述出函数的图象,例如函数和,虽然它们都是增函数,但是图像上却有很大的差异. 通过观察图像和阅读数学文献,该小组了解到了函数的凹凸性的概念. 已知定义:设连续函数f(x)的定义域为,如果对于内任意两数,都有,则称为上的凹函数;若,则为凸函数. 对于函数的凹凸性,通过查阅资料,小组成员又了解到了琴生不等式(Jensen不等式):若f(x)是区间上的凹函数,则对任意的,有不等式恒成立(当且仅当时等号成立). 小组成员通过询问数学竞赛的同学对他们研究的建议,得到了如下评注:在运用琴生不等式求多元最值问题,关键是构造函数.小组成员选择了反比例型函数和对数函数,研究函数的凹凸性.
(1)设,求W=的最小值.
(2)设为大于或等于1的实数,证明(提示:可设)
(3)若a>1,且当时,不等式恒成立,求实数的取值范围.
【变式5-3】设连续函数的定义域为,如果对于内任意两数,都有,则称为上的凹函数;若,则称为凸函数.若是区间上的凹函数,则对任意的,有琴生不等式恒成立(当且仅当时等号成立).
(1)证明:在上为凹函数;
(2)设,且,求的最小值;
(3)设为大于或等于1的实数,证明:.(提示:可设)
题型六:微积分、洛必达
【典例6-1】①在微积分中,求极限有一种重要的数学工具——洛必达法则,法则中有一结论:若函数,的导函数分别为,,且,则;
②设,k是大于1的正整数,若函数满足:对任意,均有成立,且,则称函数为区间上的k阶无穷递降函数.
结合以上两个信息,回答下列问题:
(1)证明不是区间上的2阶无穷递降函数;
(2)计算:;
(3)记,;求证:.
【典例6-2】英国物理学家、数学家艾萨克•牛顿与德国哲学家、数学家戈特弗里德•莱布尼茨各自独立发明了微积分.其中牛顿在《流数法与无穷级数》(The Methd f Fluxins and Inifinite Series)一书中,给出了高次代数方程的一种数值解法——牛顿法.如图,具体做法如下:先在x轴找初始点,然后作y=fx在点处切线,切线与x轴交于点,再作y=fx在点处切线,切线与x轴交于点,再作y=fx在点处切线,以此类推,直到求得满足精度的零点近似解为止.
(1)设函数,初始点,若按上述算法,求出的一个近似值(精确到0.1);
(2)如图,设函数,初始点为,若按上述算法,求所得前n个三角形,,……,的面积和;
(3)设函数,令,且,若函数,,设曲线的一条切线方程为,证明:当时,.
【变式6-1】(2024·浙江·二模)①在微积分中,求极限有一种重要的数学工具——洛必达法则,法则中有结论:若函数,的导函数分别为,,且,则
.
②设,k是大于1的正整数,若函数满足:对任意,均有成立,且,则称函数为区间上的k阶无穷递降函数.
结合以上两个信息,回答下列问题:
(1)试判断是否为区间上的2阶无穷递降函数;
(2)计算:;
(3)证明:,.
【变式6-2】(2024·湖北·二模)微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段.对于函数在区间上的图像连续不断,从几何上看,定积分便是由直线和曲线所围成的区域(称为曲边梯形)的面积,根据微积分基本定理可得,因为曲边梯形的面积小于梯形的面积,即,代入数据,进一步可以推导出不等式:.
(1)请仿照这种根据面积关系证明不等式的方法,证明:;
(2)已知函数,其中.
①证明:对任意两个不相等的正数,曲线y=fx在x1,fx1和x2,fx2处的切线均不重合;
②当时,若不等式恒成立,求实数的取值范围.
1.拉格朗日中值定理是微分学的基本定理之一,内容为:如果函数在闭区间上的图象连续不间断,在开区间内的导数为,那么在区间内至少存在一点c,使得成立,其中c叫做在上的“拉格朗日中值点”.根据这个定理,可得函数在上的“拉格朗日中值点”为( )
A.1B.eC.D.
2.两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在,为此,洛必达在1696年提出洛必达法则,即在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法,如,则( )
A.B.C.1D.2
3.两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在,为此,洛必达在1696年提出洛必达法则,即在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法,如,则( )
A.B.C.1D.2
4.拉格朗日中值定理是微分学的基本定理之一,定理内容为:如果函数在区间上的图像连续不间断,在开区间内的导数为,那么在区间内至少存在一点,使得成立,其中叫作在上“拉格朗日中值点”.根据这个定理,可得函数在上的拉格朗日中值点的个数为 .
5.法国数学家拉格朗日于1778年在其著作《解析函数论》中提出一个定理:如果函数满足如下两个条件:(1)其图象在闭区间上是连续不断的;(2)在区间上都有导数.则在区间上至少存在一个数,使得,其中称为拉格朗日中值.函数在区间上的拉格朗日中值 .
6.法国数学家拉格朗日于1778年在其著作《解析函数论》中给出一个定理:如果函数满足如下条件:
(1)在闭区间上是连续不断的;
(2)在区间上都有导数.
则在区间上至少存在一个实数,使得,其中称为“拉格朗日中值”.函数在区间上的“拉格朗日中值” .
7.丹麦数学家琴生(Jensen)是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,在上的导函数为,若在上恒成立,则称函数在上为“凸函数”,已知在上为“凸函数”,则实数m的取值范围是 .
8.丹麦数学家琴生是世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.定义:函数在上的导函数为,在上的导函数为,若在上恒成立,则称函数是上的“严格凸函数”,称区间为函数的“严格凸区间”.则下列正确命题的序号为 .
①函数在上为“严格凸函数”;
②函数的“严格凸区间”为;
③函数在为“严格凸函数”,则的取值范围为.
9.(2024·云南红河·三模)丹麦数学家琴生是世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.定义:函数在上的导函数为,在上的导函数为,若在上恒成立,则称函数是上的“严格凸函数”,称区间为函数的“严格凸区间”.则下列正确命题的序号为 .
①函数在上为“严格凸函数”;
②函数的“严格凸区间”为;
③函数在为“严格凸函数”,则的取值范围为.
10.年,洛必达在他的著作《无限小分析》一书中创造了一种算法,用以寻找满足一定条件的两函数之商的极限,法则的大意为:在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法.如:,按此方法则有 .
11.英国数学家泰勒发现了如下公式:,,其中.这些公式被编入计算工具,计算工具计算足够多的项就可以确保显示值的精确性.
(1)用前三项计算;
(2)已知,,,试比较,,的大小.
12.英国数学家泰勒发现了如下公式:其中为自然对数的底数,.以上公式称为泰勒公式.设,根据以上信息,并结合高中所学的数学知识,解决如下问题.
(1)证明:;
(2)设,证明::
(3)设,证明:当时,的极小值点是0.
13.(2024·高三·辽宁沈阳·开学考试)在高等数学中,我们将在处及其附近可以用一个多项式函数近似表示,具体形式为:(其中表示的n次导数),以上公式我们称为函数在处的秦勒展开式.
(1)分别求在处的泰勒展开式;
(2)若上述泰勒展开式中的x可以推广至复数域,试证明:.(其中为虚数单位);
(3)当时,求证:.(参考数据)
14.(2024·全国·模拟预测)英国数学家泰勒发现了如下公式:,其中,为自然对数的底数,.以上公式称为泰勒公式.设,,根据以上信息,并结合高中所学的数学知识,解决如下问题:
(1)证明:;
(2)设,证明:;
(3)设实数使得对恒成立,求的最大值.
15.(2024·高三·四川成都·开学考试)麦克劳林展开式是泰勒展开式的一种特殊形式,的麦克劳林展开式为:,其中表示的n阶导数在0处的取值,我们称为麦克劳林展开式的第项.例如:.
(1)请写出的麦克劳林展开式中的第2项与第4项;
(2)数学竞赛小组发现的麦克劳林展开式为,这意味着:当时,,你能帮助数学竞赛小组完成对此不等式的证明吗?
(3)当时,若,求整数的最大值.
16.帕德近似是法国数学家亨利帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,函数在处的阶帕德近似定义为:,且满足:,,,,.(注:,,,,为的导数)已知在处的阶帕德近似为.
(1)求实数的值;
(2)证明:当时,;
(3)设为实数,讨论函数的单调性.
17.(2024·福建厦门·三模)帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法,在计算机数学中有着广泛的应用.已知函数在处的阶帕德近似定义为:,且满足:,,,…,.其中,,…,.已知在处的阶帕德近似为.
(1)求实数a,b的值;
(2)设,证明:;
(3)已知是方程的三个不等实根,求实数的取值范围,并证明:.
18.帕德近似是法国数学家亨利帕德发明的用有理数多项式近似特定函数的方法,给定两个正整数,函数在处的阶帕德近似定义为,且满足:...已知在处的阶帕德近似为.注:,
(1)求实数的值;
(2)求证:;
(3)求不等式的解集,其中,
19.(2024·江苏扬州·模拟预测)帕德近似是法国数学家帕德发明的用多项式近似特定函数的方法.给定两个正整数m,n,函数在处的阶帕德近似定义为:,且满足:,,,…,.注:,,,,…已知在处的阶帕德近似为.
(1)求实数a,b的值;
(2)当时,试比较与的大小,并证明;
(3)已知正项数列满足:,,求证:.
20.帕德近似是法国数学家亨利帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,,函数在处的阶帕德近似定义为:,且满足:,,,,,注:,,,,已知函数.
(1)求函数在处的阶帕德近似.
(2)在(1)的条件下: ①求证:;
②若恒成立,求实数的取值范围.
21.罗尔 中值定理是微分学中的一条重要定理,根据它可以推出拉格朗日中值定理和柯西 中值定理,它们被称为微分学的三大中值定理. 罗尔中值定理的描述如下:如果函数 满足三个条件①在闭区间 上的图象是连续不断的,②在开区间内是可导函数,③,那么在 内至少存在一点,使得等式成立.
(1)设方程 有一个正根,证明:方程 必有一个小于的正根.
(2)设函数是定义在上的连续且可导函数,且.证明:对于,方程 在 内至少有两个不同的解.
(3)设函数.证明:函数在区间 内至少存在一个零点.
22.罗尔定理是高等代数中微积分的三大定理之一,它与导数和函数的零点有关,是由法国数学家米歇尔罗尔于1691年提出的.它的表达如下:如果函数满足在闭区间连续,在开区间内可导,且,那么在区间内至少存在一点,使得.
(1)运用罗尔定理证明:若函数在区间连续,在区间上可导,则存在,使得.
(2)已知函数,若对于区间内任意两个不相等的实数,都有成立,求实数的取值范围.
23.已知函数,.
(1)当时,求函数的在点处的切线;
(2)若函数在区间上单调递减,求的取值范围;
(3)若函数的图象上存在两点,,且,使得,则称为“拉格朗日中值函数”,并称线段的中点为函数的一个“拉格朗日平均值点”.试判断函数是否为“拉格朗日中值函数”,若是,判断函数的“拉格朗日平均值点”的个数;若不是,说明理由.
24.函数.
(1)讨论函数的单调性;
(2)若函数图象上存在两点,且,使得,则称为“拉格朗日中值函数”,并称线段的中点为函数的一个“拉格朗日平均值点”.试判断函数是否为“拉格朗日中值函数”?若是,判断函数的“拉格朗日平均值点”的个数;若不是,请说明理由.
28.法国数学家拉格朗日于1778年在其著作《解析函数论》中提出一个定理:
如果函数满足如下条件:
①的图象在闭区间上是连续不断的;
②在区间上都有导数.
则在区间上至少存在一个数,使得.
这就是著名的“拉格朗日中值定理”,其中称为拉格朗日中值.
请阅读以上内容,回答以下问题:
⑴函数在区间上的拉格朗日中值为 ;
⑵下列函数,是否存在以0为拉格朗日中值的区间?若存在,请将函数对应的序号全部填在横线上 .
①; ②; ③; ④; ⑤
29.(2024·山西·三模)微分中值定理是微积分学中的重要定理,它是研究区间上函数值变化规律的有效工具,其中拉格朗日中值定理是核心,它的内容如下:
如果函数在闭区间上连续,在开区间可导,导数为,那么在开区间内至少存在一点,使得,其中叫做在上的“拉格朗日中值点”.已知函数.
(1)若,求函数在上的“拉格朗日中值点”;
(2)若,求证:函数在区间图象上任意两点,连线的斜率不大于;
(3)若,且,求证:.
30.变分法是研究变元函数达到极值的必要条件和充要条件,欧拉、拉格朗日等数学家为其奠定了理论基础,其中“平缓函数”是变分法中的一个重要概念.设是定义域为的函数,如果对任意的均成立,则称是“平缓函数”.
(1)若.试判断和是否为“平缓函数”?并说明理由;(参考公式:①时,恒成立;②.)
(2)若函数是周期为2的“平缓函数”,证明:对定义域内任意的,均有;
(3)设为定义在上的函数,且存在正常数,使得函数为“平缓函数”.现定义数列满足:,试证明:对任意的正整数.
(参考公式:且时,.)
31.已知数列an的前项和为,且.
(1)求数列an的通项公式;
(2)伯努利不等式是由瑞士数学家雅各布・伯努利提出的,是分析不等式中最常见的一种不等式.伯努利不等式的一般形式为:若且为正整数时,,当且仅当或时等号成立.
(ⅰ)证明:数列为递增数列;
(ⅱ)已知时,,证明:.
32.(2024·江西新余·模拟预测)偏导数在微积分领域中有重要意义.定义:设二元函数在点附近有定义,当固定在而在处有改变量时,相应的二元函数有改变量,如果存在,那么称此极限为二元函数在点处对的偏导数(计算时相当于将视为常数),记作,若在区域内每一点对的偏导数都存在,那么这个偏导数就是一个关于的偏导函数,它被称为二元函数对的偏导函数,记作.以上定义同样适用于三元函数.
(1)气体状态方程描述的三个变量满足:(是非零常量).求的值,并说明其为常数.
(2)求值:对的偏导数.
(3)将偏导数应用于包络线在金融领域可以发挥重要价值.在几何学中,某个平面内曲线族的包络线是跟该曲线族的每条线都至少有一点相切的一条曲线,例如:曲线族的包络线为.不难发现:对于任何一个给定的的值,包络线与原曲线的切点的总是对应值在参数取遍后得到的极值.已知函数的包络线为.
(i)求证:.
(ⅱ)设的极值点构成曲线,求证:当时,与有且仅有一个公共点.
33.(2024·云南曲靖·模拟预测)英国物理学家、数学家艾萨克·牛顿与德国哲学家、数学家戈特弗里德·莱布尼茨各自独立发明了微积分,其中牛顿在《流数法与无穷级数》一书中,给出了高次代数方程的一种数值解法——牛顿法.如图,具体做法如下:一个函数的零点为,先在轴找初始点,然后作y=fx在点处切线,切线与轴交于点,再作y=fx在点处切线,切线与轴交于点,再作y=fx在点处切线,以此类推,直到求得满足精度的零点近似解为止.
(1)设函数,初始点,精度,若按上述算法,求函数的零点近似解满足精度时的最小值(参考数据:);
(2)设函数,令,且,若函数,,证明:当时,.
34.(2024·河南·模拟预测)数列极限理论是数学中重要的理论之一,它研究的是数列中数值的变化趋势和性质.数列极限概念作为微积分的基础概念,它的产生与建立对微积分理论的创立有着重要的意义.请认真理解下述3个概念.
概念1:对无穷数列an,称为数列an的各项和.
概念2:对一个定义域为正整数集的函数,如果当趋于正无穷大时,的值无限趋近于一个常数,即当时,,就说常数是的极限值,记为.如:,当时,由反比例函数的性质可知,即记为.当(为常数)时,.
概念3:对无穷数列an,其各项和为,若当时,(为常数),即,则称该数列的和是收敛的,为其各项和的极限;若当时,其各项和的极限不存在,则称该数列的和是发散的,其各项和的极限不存在.
试根据以上概念,解决下列问题:
(1)在无穷数列an中,,求数列an的各项和的极限值;
(2)在数列bn中,,讨论数列bn的和是收敛的还是发散的;
(3)在数列中,,求证:数列的和是发散的.
相关试卷
这是一份高考数学一轮复习讲练测(新教材新高考)重难点突破01奔驰定理与四心问题(五大题型)(原卷版+解析),共43页。试卷主要包含了,且,则___等内容,欢迎下载使用。
这是一份高考数学一轮复习讲练测(新教材新高考)重难点突破01ω的取值范围与最值问题(六大题型)(原卷版+解析),共40页。试卷主要包含了在区间内没有零点,在区间内有个零点,已知单调区间,则.等内容,欢迎下载使用。
这是一份专题04 高等数学定理背景命题(六大题型)-2024年新高考数学突破新定义压轴题综合讲义,文件包含专题04高等数学定理背景命题六大题型原卷版docx、专题04高等数学定理背景命题六大题型解析版docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。