


2024-2025学年北京市朝阳区清华大学附属中学朝阳分校高三上学期10月月考数学试题(含答案)
展开
这是一份2024-2025学年北京市朝阳区清华大学附属中学朝阳分校高三上学期10月月考数学试题(含答案),共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
1.已知全集U=xx>0,集合A=x2≤x≤3,则∁UA=( )
A. 0,2∪3,+∞B. 0,2∪3,+∞
C. −∞,2∪3,+∞D. −∞,2∪3,+∞
2.若等差数列an和等比数列bn满足a1=b1,a2=b2=2,a4=8,则bn的公比为( )
A. 2B. −2C. 4D. −4
3.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于直线y=x对称.若sinα=35,则csβ=( )
A. −45B. 45C. −35D. 35
4.若点M1,1为圆C: x2+y2−4x=0的弦AB的中点,则直线AB的方程是( )
A. x−y−2=0B. x+y−2=0C. x−y=0D. x+y=0
5.已知D是边长为2的正△ABC边BC上的动点,则AB⋅AD的取值范围是( )
A. [ 3,4]B. [ 3,2]C. [0,2]D. [2,4]
6.若a>b>0,则①1b>1a;②ab>a+1b+1;③ a+1− b+1> a− b.上述结论中,所有正确结论的序号是( )
A. ①②B. ①③C. ②③D. ①②③
7.若命题“∃x∈R,x2+2x+m≤0”是真命题,则实数m的取值范围是( )
A. m1D. m≥1
8.“a=1”是“函数fx=2x+a2x−a具有奇偶性”的( )
A. 充分而不必要条件B. 必要而不充分条件
C. 充分必要条件D. 既不充分也不必要条件
9.已知函数f(x)=3x−2x,则( )
A. fx在R上单调递增
B. 对∀x∈R,f(x)>−1恒成立
C. 不存在正实数a,使得函数y=fxax为奇函数
D. 方程fx=x只有一个解
10.如图为某无人机飞行时,从某时刻开始15分钟内的速度Vx(单位:米/分钟)与时间x(单位:分钟)的关系.若定义“速度差函数”vx为无人机在时间段0,x内的最大速度与最小速度的差,则vx的图像为( )
A. B.
C. D.
二、填空题:本题共5小题,每小题5分,共25分。
11.函数fx=1x−1+lnx的定义域是 .
12.直线l:x+y=1截圆x2+y2−2x−2y=0的弦长= .
13.如图,在四棱锥P−ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点,平面AEF与平面PBC__ (填“垂直”或“不垂直”);▵AEF的面积的最大值为 .
14.设函数fx=2x−1,x0,an+1an−an2=λ(λ∈R).给出下列四个结论:
①an是递增数列; ②∀λ∈R,an都不是等差数列;
③当λ=1时,a1是an中的最小项; ④当λ≥14时,S2023>2022.
其中所有正确结论的序号是 .
三、解答题:本题共6小题,共72分。解答应写出文字说明,证明过程或演算步骤。
16.(本小题12分)
在▵ABC中,角A,B,C所对的边分别为a,b,c,已知b2+c2=a2+bc.
(1)求A的大小;
(2)如果csB= 63,b=2,求▵ABC的面积.
17.(本小题12分)
已知函数f(x)=sin(ωx+φ)ω>0,φln(x+1) x∈0,π2;
(3)若f(x)>ln(x+1)在x∈0,π2恒成立,求k的最小值.
21.(本小题12分)
若数列an的子列akn−i(i=0,1,2,⋯,k−1)均为等差数列,则称an为k阶等差数列.
(1)若an=n,数列a3n−2的前15项与a4n的前15项中相同的项构成数列bn,写出bn的各项,并求bn的各项和;
(2)若数列an既是3阶也是4阶等差数列,设a3n−2,a3n−1,a3n的公差分别为d1,d2,d3.
(ⅰ)判断d1,d2,d3的大小关系并证明;
(ⅱ)求证:数列an是等差数列.
参考答案
1.B
2.B
3.D
4.C
5.D
6.A
7.B
8.A
9.B
10.C
11.0,1∪1,+∞.
12. 6
13.垂直 3
14.−2 a≤−1
15.③④
16.(1)b2+c2=a2+bc。
由余弦定理可得csA=b2+c2−a22bc=bc2bc=12,
又因为0
相关试卷
这是一份2024-2025学年北京市朝阳区北京工业大学附属中学高三上学期9月月考数学试题(含答案),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年北京市朝阳区中国人民大学附属中学朝阳学校高三上学期10月月考数学试题(含答案),共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份北京市清华大学附属中学朝阳分校2024-2025学年高三上学期10月月考数学试卷(Word版附解析),文件包含北京市清华大学附属中学朝阳分校2025届高三上学期10月月考数学试题Word版含解析docx、北京市清华大学附属中学朝阳分校2025届高三上学期10月月考数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。