开学活动
搜索
    上传资料 赚现金

    重庆市一中2024年数学九年级第一学期开学学业质量监测试题【含答案】

    重庆市一中2024年数学九年级第一学期开学学业质量监测试题【含答案】第1页
    重庆市一中2024年数学九年级第一学期开学学业质量监测试题【含答案】第2页
    重庆市一中2024年数学九年级第一学期开学学业质量监测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市一中2024年数学九年级第一学期开学学业质量监测试题【含答案】

    展开

    这是一份重庆市一中2024年数学九年级第一学期开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)计算÷的结果是( )
    A.B.C.D.
    2、(4分)如图,在矩形中,对角线、相交于点,垂直平分,若cm,则()
    A.B.C.D.
    3、(4分)如图,五边形ABCDE的每一个内角都相等,则外角∠CBF等于( )

    A.60°B.72°C.80°D.108°
    4、(4分)已知,顺次连接矩形各边的中点,得到一个菱形,如图1;再顺次连接菱形各边的中点,得到一个新的矩形,如图2;然后顺次连接新的矩形各边的中点得到一个新的菱形,如图3;……如此反复操作下去,则第2018个图形中直角三角形的个数有( )
    A.2018个B.2017个C.4028个D.4036个
    5、(4分)下列表格是二次函数的自变量x与函数值y的对应值,判断方程(为常数)的一个解x的范围是
    A.B.
    C.D.
    6、(4分)若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为( )
    A.1B.﹣2C.﹣1D.2
    7、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
    则这四人中成绩发挥最稳定的是( )
    A.甲B.乙C.丙D.丁
    8、(4分)一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为( )
    A.5B.6C.7D.8
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.
    10、(4分)某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为________.
    11、(4分)如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__
    12、(4分)已知a+b=4,ab=2,则的值等于_____.
    13、(4分)一次函数不经过第_________象限;
    三、解答题(本大题共5个小题,共48分)
    14、(12分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了解学生对四大名著的阅读情况,就“四大古典名著”你读完了几部的问题在全校900名学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.
    请根据以上信息,解决下列问题
    (1)本次调查被调查的学生__________名,学生阅读名著数量(部)的众数是__________,中位数是__________;
    (2)扇形统计图中“1部”所在扇形的圆心角为__________度;
    (3)请将条形统计图补充完整;
    (4)试估算全校大约有多少学生读完了3部以上(含3部)名著.
    15、(8分)如图,已知等边△ABC,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.
    (1)当点D在线段BC上,∠NDB为锐角时,如图①.
    ①判断∠1与∠2的大小关系,并说明理由;
    ②过点F作FM∥BC交射线AB于点M,求证:CF+BE=CD;
    (2)①当点D在线段BC的延长线上,∠NDB为锐角时,如图②,请直接写出线段CF,BE,CD之间的数量关系;
    ②当点D在线段CB的延长线上,∠NDB为钝角或直角时,如图③,请直接写出线段CF,BE,CD之间的数量关系.
    16、(8分)(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论;
    (2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,猜测MN与BM的数量关系,无需证明.
    17、(10分)(1)计算:
    (2)先化简,再求值:已知,试求的值.
    18、(10分)如图,矩形ABCD中,AB=9,AD=1.E为CD边上一点,CE=2.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
    (1)求AE的长;
    (2)当t为何值时,△PAE为直角三角形?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在平面直角坐标系中,已知一次函数y=x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”).
    20、(4分)方程x2=x的解是_____.
    21、(4分)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________.
    22、(4分)如图,矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的值为_____________.
    23、(4分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:
    ③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.
    (1)以上三个命题是真命题的为(直接作答)__________________;
    (2)选择一个真命题进行证明(先写出所选命题.然后证明).
    25、(10分)已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.
    (1)如图1,求证:AE=EF;
    (2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.
    26、(12分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据根式的计算法则计算即可.
    【详解】
    解:÷=
    故选C.
    本题主要考查分式的计算化简,这是重点知识,应当熟练掌握.
    2、C
    【解析】
    由矩形的性质和线段垂直平分线的性质证出OA=AB=OB,根据AE求出OE即可解决问题.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵AE垂直平分OB,
    ∴AB=AO,
    ∴OA=AB=OB,
    ∵AE=cm,
    ∴OE=2 cm,
    ∴OD=OB=2OE=4 cm;
    故选:C.
    此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    3、B
    【解析】
    由题意可知五边形的每一个外角都相等,五边形的外角和为,由计算即可求得 ∠CBF 的大小.
    【详解】
    解:因为五边形的每一个内角都相等,所以五边形的每一个外角都相等,则每个外角=.
    故答案为: B
    本题考查了多边形的外角和,n边形的外角和为,若多边形的外角都相等即可知每个外角的度数,熟练掌握多边形的外角和定理是解题的关键.
    4、D
    【解析】
    写出前几个图形中的直角三角形的个数,并找出规律,当n为奇数时,三角形的个数是2(n+1),当n为偶数时,三角形的个数是2n,根据此规律求解即可.
    【详解】
    第1,2个图形各有4个直角三角形;
    第3,4个图形各有8个直角三角形;
    第5,6个图形各有12个直角三角形……
    第2017,2018个图形各有4036个直角三角形,
    故选:D.
    本题主要考查了中点四边形、图形的变化,根据前几个图形的三角形的个数,观察出与序号的关系式解题的关键.
    5、C
    【解析】
    利用二次函数和一元二次方程的性质.
    由表格中的数据看出-0.01和0.02更接近于0,故x应取对应的范围.
    故选C.
    6、C
    【解析】
    把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.
    【详解】
    解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.
    故选:C.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    7、B
    【解析】
    在平均数相同时
    方差越小则数据波动越小说明数据越稳定,
    8、C
    【解析】
    解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.
    【详解】
    多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据内角和比他的外角和的3倍少180°列方程求解.
    设所求n边形边数为n,
    则(n-2)•180°=360°×3-180°,
    解得n=7,
    故选C.
    本题主要考查了多边形的内角和与外角和,解答本题的关键是记住多边形内角和公式为(n-2)×180°.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(5,-)或(5,-).
    【解析】
    由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.
    【详解】
    ∵AE分△ABC的面积比为1:2,点E在线段BC上,
    ∴BE:CE=1:2或BE:CE=2:1.
    ∵B(5,1),C(5,-6),
    ∴BC=1-(-6)=2.
    当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);
    当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).
    故答案为:(5,-)或(5,-).
    本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.
    10、y=
    【解析】
    先根据条件算出注满容器还需注水200m3 , 根据注水时间=容积÷注水速度,据此列出函数式即可.
    【详解】
    解:容积300m3,原有水100m3,还需注水200m3,由题意得:y=.
    本题考查了反比例函数的实际应用,理清实际问题中的等量关系是解题的关键.
    11、
    【解析】
    求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.
    【详解】
    如图,
    在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:
    ∴菱形形变前的面积与形变后的面积之比:
    ∵这个菱形的“形变度”为2:,
    ∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,

    ∵若这个菱形的“形变度”k=,


    ∴S△A′E′F′=.
    故答案为:.
    考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.
    12、1
    【解析】
    将a+b、ab的值代入计算可得.
    【详解】
    解:当a+b=4,ab=2时,


    =1,
    故答案为:1.
    本题主要考查分式的加减法,解题的关键是掌握整体代入思想的运用及分式加减运算法则、完全平方公式.
    13、三
    【解析】
    根据一次函数的图像与性质即可得出答案.
    【详解】
    ∵一次函数解析式为:y=-x+1
    其中k=-10
    ∴函数图像经过一、二、四象限,不经过第三象限
    故答案为:三.
    本题考查的是一次函数的图像与性质,熟练掌握一次函数的图像与性质是解决本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)40,1,2;(2)126;(3)见解析;(4)315人.
    【解析】
    (1)根据统计图中的数据可以求得众数、中位数,
    (2)据统计图中的数据可以求得相应的圆心角的度数;
    (3)根据统计图中的数据,可以求得读一部的学生数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得看完3部以上(包含3部)的有多少人.
    【详解】
    解:(1)本次调查的学生有:10×25%=40(人),
    读一部的有:40-2-10-8-6=14(人),
    本次调查所得数据的众数是1部,
    ∵2+14+10=26>21,2+14<20,
    ∴中位数为2部,
    (2)扇形统计图中“1部”所在扇形的圆心角为:,
    故答案为:.
    (3)补全的条形统计图如右图所示;
    (4))∵=315(人),
    ∴看完3部以上(包含3部)的有315人.
    本题考查条形统计图、扇形统计图、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.
    15、(1)①∠1=∠2,理由见解析,②证明见解析;(2)①BE=CD+CF,②CF=CD+BE.
    【解析】
    (1)①由等边三角形的性质和∠ADN=60°,易得∠1+∠ADC=120°,∠2+∠ADC=120°,所以∠1=∠2;
    ②由条件易得四边形BCFM为平行四边形,得到BM=CF,BC=MF,再证明△MEF≌△CDA,得到ME=CD,利用等量代换即可得证;
    (2)①过F作FH∥BC,易得四边形BCFH为平行四边形,可得HF=BC,BH=CF,然后证明△EFH≌△DAC,得到CD=EH,利用等量代换即可得BE=CD+CF;
    ②过E作EG∥BC,易得四边形BCGE为平行四边形,可得EG=BC,BE=CG,然后证明△EFG≌△ADC,得到CD=FG,利用等量代换即可得CF=CD+BE.
    【详解】
    (1)①∠1=∠2,理由如下:
    ∵△ABC为等边三角形
    ∴∠ACB=60°
    ∴∠2+∠ADC=120°
    又∵∠AND=60°
    ∴∠1+∠ADC=120°
    ∴∠1=∠2
    ②∵MF∥BC,CF∥BM
    ∴四边形BCFM为平行四边形
    ∴BM=CF,BC=MF=AC,
    ∵BC∥MF
    ∴∠1=∠EFM=∠2,∠EMF=∠ABC=60°
    在△MEF和△CDA中,
    ∵∠EFM=∠2,MF= AC,∠EMF=∠ACD=60°
    ∴△MEF≌△CDA(ASA)
    ∴ME=CD
    ∴ME=BM+BE=CF+BE=CD
    即CF+BE=CD
    (2)①BE=CD+CF,证明如下:
    如图,过F作FH∥BC,
    ∵CF∥BH,FH∥BC,
    ∴四边形BCFH为平行四边形
    ∴HF=BC=AC,BH=CF
    ∵△ABC为等边三角形
    ∴∠ABC=∠ACB=60°
    ∴∠CAD+∠ADC=60°,∠DBE=120°,∠ACD=120°
    又∵∠AND=60°,即∠BDN+∠ADC=60°
    ∴∠CAD=∠BDN
    ∵BD∥HF
    ∴∠HFE=∠BDN=∠CAD,∠EHF=∠ACD=120°
    在△EFH和△DAC中,
    ∵∠EHF=∠ACD,HF=AC,∠HFE=∠CAD
    ∴△EFH≌△DAC(ASA)
    ∴EH=CD
    ∴BE=BH+EH=CF+CD
    即BE=CD+CF;
    ②CF=CD+BE,证明如下:
    如图所示,过E作EG∥BC,
    ∵EG∥BC,CG∥BE
    ∴四边形BCGE为平行四边形,
    ∴EG=BC=AC,BE=CG,
    ∵∠AND=60°,∠ACD=60°
    ∴∠ADC+∠CDE=120°,∠ADC+∠DAC=120°
    ∴∠CDE=∠DAC
    又∵CD∥EG
    ∴∠GEF=∠CDE=∠DAC,∠EGF=∠DCF
    ∵AE∥CF
    ∴∠DCF=∠ABC=60°
    ∴∠EGF=∠ABC=60°
    在△EFG和△ADC中,
    ∵∠GEF=∠DAC,EG=AC,∠EGF=∠ACD=60°
    ∴△EFG≌△ADC(ASA)
    ∴FG=CD
    ∴CF=CG+FG=BE+CD
    即CF=CD+BE
    本题考查了等边三角形的性质,全等三角形的判定与性质,平行四边形的判定与性质,解题的关键是根据“一线三等角”模型找到全等三角形,正确作出辅助线,利用等量代换找出线段关系.
    16、(1)30º,见解析.(2)
    【解析】
    (1)猜想:∠MBN=30°.如图1中,连接AN.想办法证明△ABN是等边三角形即可解决问题;
    (2)MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.只要证明△MOP≌△BOP,即可解决问题.
    【详解】
    (1)猜想:∠MBN=30°.
    证明:如图1中,连接AN,∵直线EF是AB的垂直平分线,
    ∴NA=NB,由折叠可知,BN=AB,
    ∴AB=BN=AN,
    ∴△ABN是等边三角形,
    ∴∠ABN=60°,
    ∴NBM=∠ABM=∠ABN=30°.
    (2)结论:MN=BM.
    折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,
    折痕为MP,连接OP.
    理由:由折叠可知△MOP≌△MNP,
    ∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,
    ∠MOP=∠MNP=90°,
    ∴∠BOP=∠MOP=90°,
    ∵OP=OP,
    ∴△MOP≌△BOP,
    ∴MO=BO=BM,
    ∴MN=BM.
    本题考查翻折变换、矩形的性质、剪纸问题等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造全等三角形解决问题.
    17、 (1) (2) ;
    【解析】
    (1)根据二次根式的性质即可化简运算;
    (2)先化简二次根式,再代入a,b即可求解.
    【详解】
    (1) 解: ;
    (2)解:
    当时,
    原式.
    此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质进行化简.
    18、(1)5;(2)当t=2或t=时,△PAE为直角三角形;
    【解析】
    (1)在直角△ADE中,利用勾股定理进行解答;
    (2)需要分类讨论:AE为斜边和AP为斜边两种情况下的直角三角形;
    【详解】
    解:(1)∵矩形ABCD中,AB=9,AD=1,
    ∴CD=AB=9,∠D=90°,
    ∴DE=9﹣2=3,
    ∴AE==5;
    (2)①若∠EPA=90°,t=2;
    ②若∠PEA=90°,(2﹣t)2+12+52=(9﹣t)2,
    解得t=.
    综上所述,当t=2或t=时,△PAE为直角三角形;
    本题考查了四边形综合题,综合勾股定理,直角三角形的性质,一元二次方程的应用等知识点,要注意分类讨论,以防漏解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据一次函数的性质,k>0时,y随x的增大而增大;k<0时,y随x的增大而减小,从而得出答案.
    【详解】
    一次函数y=x+1,,y随x的增大而减小
    ∵x1<x2
    ∴y1>y2
    故答案为:>
    本题考查了一次函数的增减性,熟练掌握相关知识点是解题关键.
    20、x1=0,x2=1
    【解析】
    利用因式分解法解该一元二次方程即可.
    【详解】
    解:x2=x,
    移项得:x2﹣x=0,
    分解因式得:x(x﹣1)=0,
    可得x=0或x﹣1=0,
    解得:x1=0,x2=1.
    故答案为:x1=0,x2=1
    本题考查了解一元二次方程,熟练掌握因式分解法是解题的关键.
    21、-1
    【解析】
    试题分析:由于点A是反比例函数y=上一点,矩形ABOC的面积S=|k|=1,则k的值为-1.
    考点:反比例函数
    22、
    【解析】
    由矩形的性质和已知条件,可判定,设,根据全等三角形的性质及矩形的性质可用含x的式子表示出DF和AF的长,在根据勾股定理可求出x的值,即可确定AF的值.
    【详解】
    解:四边形ABCD是矩形,
    ,,
    是由沿折叠而来的
    , ,

    (AAS)

    设,则
    在中,根据勾股定理得:
    ,即
    解得

    故答案为:
    本题考查了求多边形中的线段长,主要涉及的知识点有矩形的性质,全等三角形的判定与性质,勾股定理,数学的方程思想,用同一个字母表示出直角三角形中的三边长是解题的关键.
    23、50°
    【解析】
    先根据平行线的性质以及角平分线的定义,得到∠AFE的度数,再根据平行线的性质,即可得到∠A的度数.
    【详解】
    ∵CD∥EF,∠C=∠CFE=25°.
    ∵FC平分∠AFE,∴∠AFE=2∠CFE=50°.
    又∵AB∥EF,∴∠A=∠AFE=50°.
    故答案为50°.
    本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①②③;①③②;②③①. (2)见解析
    【解析】
    (1)根据真命题的定义即可得出结论,
    (2)根据全等三角形的判定方法及全等三角形的性质即可证明.
    【详解】
    解:(1)①②③;①③②;②③①.
    (2)如①③②
    AB=AC
    =
    BD=CE
    △ABD≌△ACE
    AD=AE
    25、(1)证明见解析;(2).
    【解析】
    (1)截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可;
    (2)取AB中点M,连接EM,求出BM=BE,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.
    【详解】
    (1)证明:如图1,在AB上截取BM=BE,连接ME,
    ∵∠B=90°,
    ∴∠BME=∠BEM=45°,
    ∴∠AME=135°
    ∵CF是正方形的∠C外角的平分线,
    ∴∠ECF=90°+45°=135°
    ∴∠AME=∠ECF,
    ∵AB=BC,BM=BE,
    ∴AM=EC,
    ∵AE⊥EF,
    ∴∠AEF=90°,
    ∴∠AEB+∠CEF=90°,
    ∵∠BAE+∠AEB=90°,
    ∴∠BAE=∠CEF,
    在△AME和△ECF中

    ∴△AME≌△ECF(ASA),
    ∴AE=EF;
    (2)解:取AB中点M,连接EM,
    ∵AB=BC,E为BC中点,M为AB中点,
    ∴AM=CE=BE,
    ∴∠BME=∠BME=45°,
    ∴∠AME=135°=∠ECF,
    ∵∠B=90°,
    ∴∠BAE+∠AEB=90°,
    ∵∠AEF=90°,
    ∴∠AEB+∠FEC=90°,
    ∴∠BAE=∠FEC,
    在△AME和△ECF中

    ∴△AME≌△ECF(ASA),
    ∴EM=CF,
    ∵AB=2,点E是边BC的中点,
    ∴BM=BE=1,
    ∴CF=ME=.
    本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.
    26、1
    【解析】
    试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
    考点:相似三角形的应用.
    题号





    总分
    得分
    批阅人
    x

    6.17
    6.18
    6.19
    6.20


    -0.03
    -0.01
    0.02
    0.04

    选 手




    平均数(环)
    9.2
    9.2
    9.2
    9.2
    方差(环2)
    0.035
    0.015
    0.025
    0.027

    相关试卷

    重庆一中学2025届数学九年级第一学期开学学业质量监测试题【含答案】:

    这是一份重庆一中学2025届数学九年级第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市綦江县名校2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份重庆市綦江县名校2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市南山中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】:

    这是一份重庆市南山中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map