|试卷下载
终身会员
搜索
    上传资料 赚现金
    重庆市綦江中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】
    立即下载
    加入资料篮
    重庆市綦江中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】01
    重庆市綦江中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】02
    重庆市綦江中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市綦江中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】

    展开
    这是一份重庆市綦江中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列图案中,既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    2、(4分)如图,平行四边形ABCD中,若∠A=60°,则∠C的度数为( )
    A.120°B.60°C.30°D.15°
    3、(4分)下列等式成立的是( )
    A.B.C.D.
    4、(4分)若A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=图象上的点,且x1A.y3>y1>y2B.y1>y2>y3
    C.y2>y1>y3D.y3>y2>y1
    5、(4分)如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为( )
    A.B.C.D.
    6、(4分)已知三条线段的长分别为1.5,2,3,则下列线段中,不能与它们组成比例线段的是( )
    A.lB.2.25C.4D.2
    7、(4分)已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是( )
    A.a<b<cB.b<a<cC.c<b<aD.c<a<b
    8、(4分)如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为( )
    A.6B.8C.12D.10
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于x的分式方程+2无解,则m的值为________.
    10、(4分)已知一次函数,反比例函数(,,是常数,且),若其中-部分,的对应值如表,则不等式的解集是_________.
    11、(4分)如图,直线与轴、轴分别交于点和点,点,分别为线段,的中点,点为上一动点,值最小时,点的坐标为______.
    12、(4分)有一组数据:.将这组数据改变为.设这组数据改变前后的方差分别是,则与的大小关系是______________.
    13、(4分)已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:
    (1)小帅的骑车速度为 千米/小时;点C的坐标为 ;
    (2)求线段AB对应的函数表达式;
    (3)当小帅到达乙地时,小泽距乙地还有多远?
    15、(8分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.
    (1)求6年1班40人一分钟内平均每人跳绳多少个?
    (2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?
    16、(8分)李师傅去年开了一家商店.今年1月份开始盈利,2月份盈利3000元,4月份的盈利达到4320元,且从2月到4月,每月盈利的平均增长率都相同.
    (1)求每月盈利的平均增长率;
    (2)按照这个平均增长率,预计5月份这家商店的盈利可达到多少元?
    17、(10分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.
    (1)求C点坐标;
    (2)求直线MN的解析式;
    (3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
    18、(10分)某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)
    (1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?
    (2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是____.
    20、(4分)已知四边形ABCD为菱形,其边长为6,,点P在菱形的边AD、CD及对角线AC上运动,当时,则DP的长为________.
    21、(4分)一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________
    22、(4分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为_____.
    23、(4分)矩形ABCD中,对角线AC、BD交于点O,于,若,,则____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某文具商店的某种毛笔每支售价25元,书法练习本每本售价5元,该商店为促销正在进行优惠活动:
    活动1:买一支毛笔送一本书法练习本;
    活动2:按购买金额的九折付款.
    某学校准备为书法兴趣小组购买这种毛笔20支,书法练习本x(x≥20)本.
    (1)写出两种优惠活动实际付款金额y1(元),y2(元)与x(本)之间的函数关系式;
    (2)请问:该校选择哪种优惠活动更合算?
    25、(10分),,且,,求和的度数.
    26、(12分)如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)
    (1)求k,b的值;
    (2)求四边形MNOB的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、既不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、既不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、不是轴对称图形,是中心对称图形.故此选项错误;
    D、是轴对称图形,是中心对称图形.故此选项正确.
    故选:D.
    此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、B
    【解析】
    直接利用平行四边形的对角相等即可得出答案.
    【详解】
    ∵四边形ABCD是平行四边形
    ∴∠C=∠A=60°
    故选:B.
    此题主要考查了平行四边形的性质,熟记平行四边形的对角性质是解题关键.
    3、B
    【解析】
    根据二次根式的加减、乘除运算法则以及二次根式的性质解答即可.
    【详解】
    解:A. 不是同类二次根式,故A错误;
    B. ,故B正确;
    C. ,故B错误;
    D. ,故D错误.
    故答案为B.
    本题考查了二次根式的加减、乘除运算法则以及二次根式的性质,牢记并灵活运用运算法则和性质是解答本题的关键.
    4、A
    【解析】
    先根据反比例函数y=的系数1>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x1<0<x3,判断出y1、y1、y3的大小.
    【详解】
    解:∵反比例函数y=的系数3>0,
    ∴该反比例函数的图象如图所示,
    该图象在第一、三象限,在每个象限内,y随x的增大而减小,
    又∵x1<x1<0<x3,,
    ∴y3>y1>y1.
    故选A.
    5、C
    【解析】
    如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.
    【详解】
    如图连接BD.
    ∵四边形ABCD是菱形,
    ∴AD=AB=8,

    ∴△ABD是等边三角形,
    ∴BA=AD=8,
    ∵PE=ED,PF=FB,

    故选:C.
    考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.
    6、D
    【解析】
    对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.据此求解可得.
    【详解】
    解:A.由1×3=1.5×2知1与1.5,2,3组成比例线段,此选项不符合题意;
    B.由1.5×3=2.25×2知2.25与1.5,2,3组成比例线段,此选项不符合题意;
    C.由1.5×4=3×2知4与1.5,2,3组成比例线段,此选项不符合题意;
    D.由1.5×3≠2×2知2与1.5,2,3不能组成比例线段,此选项符合题意;
    故选:D
    本题主要考查了成比例线段的关系,判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.
    7、D
    【解析】
    先把各点代入反比例函数的解析式,求出a、b、c的值,再比较大小即可.
    【详解】
    ∵点A(-2,a),B(-1,b),C(3,c)都在函数的图象上,
    ∴,
    ∴b<a<c.
    故选B.
    考查的是反比例函数图象上点的坐标特点,熟知反比例函数的图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    8、D
    【解析】
    要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
    【详解】
    解:如图,连接BM,
    ∵点B和点D关于直线AC对称,
    ∴NB=ND,
    则BM就是DN+MN的最小值,
    ∵正方形ABCD的边长是8,DM=2,
    ∴CM=6,
    ∴BM==1,
    ∴DN+MN的最小值是1.
    故选:D.
    此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.
    详解:
    去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.
    ∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.
    故答案为1.
    点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.
    10、或
    【解析】
    根据表可求出反比例函数与一次函数的交点,然后根据交点及表格中对应的函数值即可求出等式的解集.
    【详解】
    根据表格可知,当x=-2和x=4时,两个函数值相等,
    ∴与的交点为(-2,-4),(4,2),
    根据图表可知,要使,则或.
    故答案为:或.
    本题考查了反比例函数与一次函数交点问题,熟练掌握反比例函数与一次函数的性质是解答本题的关键.
    11、 (-,0)
    【解析】
    根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
    【详解】
    作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
    令y=x+4中x=0,则y=4,
    ∴点B的坐标为(0,4);
    令y=x+4中y=0,则x+4=0,解得:x=-6,
    ∴点A的坐标为(-6,0).
    ∵点C、D分别为线段AB、OB的中点,
    ∴点C(-3,1),点D(0,1).
    ∵点D′和点D关于x轴对称,
    ∴点D′的坐标为(0,-1).
    设直线CD′的解析式为y=kx+b,
    ∵直线CD′过点C(-3,1),D′(0,-1),
    ∴有,解得:,
    ∴直线CD′的解析式为y=-x-1.
    令y=-x-1中y=0,则0=-x-1,解得:x=-,
    ∴点P的坐标为(-,0).
    故答案为:(-,0).
    本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.
    12、
    【解析】
    设数据,,,,的平均数为,根据平均数的定义得出数据,,,,的平均数也为,再利用方差的定义分别求出,,进而比较大小.
    【详解】
    解:设数据,,,,的平均数为,则数据,,,,的平均数也为,



    故答案为.
    本题考查方差的定义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    13、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)16,C(0.5,0);(2);(3)4千米.
    【解析】
    (1)根据时间从1到2小帅走的路程为(24-8)千米,根据速度=路程÷时间即可求得小帅的速度,继而根据小帅的速度求出走8千米的时间即可求得点C的坐标;
    (2)根据图象利用待定系数法即可求得线段AB对应的函数表达式;
    (3)将x=2代入(2)中的解析式求出相应的y值,再用24减去此时的y值即可求得答案.
    【详解】
    (1)由图可知小帅的骑车速度为:(24-8)÷(2-1)=16千米/小时,
    点C的横坐标为:1-8÷16=0.5,
    ∴点C的坐标为(0.5,0),
    故答案为千米/小时;(0.5,0);
    (2)设线段对应的函数表达式为,
    ∵,,
    ∴,
    解得:,
    ∴线段对应的函数表达式为;
    (3)当时,,
    ∴24-20=4,
    答:当小帅到达乙地时,小泽距乙地还有4千米.
    本题考查了一次函数的应用,弄清题意,找出求解问题所需要的条件,利用数形结合思想是解题的关键.
    15、(1)40人一分钟内平均每人跳绳102;;(2)6(1)班能得到学校奖励.
    【解析】
    (1)根据加权平均数的计算公式进行计算即可;
    (2)根据评分标准计算总积分,然后与1比较大小.
    【详解】
    解:(1)6(1)班40人中跳绳的平均个数为100+=102个,
    答:40人一分钟内平均每人跳绳102;
    (2)依题意得:(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288>1.
    所以6(1)班能得到学校奖励.
    本题考查了加权平均数,正负数在实际生活中的应用.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
    16、(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为5184元.
    【解析】
    (1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
    (2)5月份盈利=4月份盈利×增长率.
    【详解】
    (1)设该商店的每月盈利的平均增长率为x,根据题意得:
    3000(1+x)2=4320,
    解得:x1=20%,x2=-2.2(舍去).
    (2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:
    4320×(1+20%)=5184(元).
    答:(1)该商店的每月盈利的平均增长率为20%.
    (2)5月份盈利为5184元.
    此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.
    17、(1)C(0,1).
    (2)y=x+1.
    (3)P1(4,3),P2()P3(),P4().
    【解析】
    试题分析:
    (1)通过解方程x2﹣14x+42=0可以求得OC=1,OA=2.则C(0,1);
    (2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;
    (3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.
    试题解析:
    (1)解方程x2-14x+42=0得
    x1=1,x2=2
    ∵OA,OC(OA>OC)的长分别是一元二次方程x2-14x+42=0的两个实数根
    ∴OC=1,OA=2
    ∴C(0,1)
    (2)设直线MN的解析式是y=kx+b(k≠0)
    由(1)知,OA=2,则A(2,0)
    ∵点A、C都在直线MN上

    解得,
    ∴直线MN的解析式为y=-x+1
    (3)
    ∵A(2,0),C(0,1)
    ∴根据题意知B(2,1)
    ∵点P在直线MN y=-x+1上
    ∴设P(a,--a+1)
    当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:
    ①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);
    ②当PC=BC时,a2+(-a+1-1)2=14
    解得,a=±,则P2(-,),P3(,)
    ③当PB=BC时,(a-2)2+(-a+1-1)2=14
    解得,a=,则-a+1=-
    ∴P4(,)
    综上所述,符合条件的点P有:P1(4,3),P2(-,),P3(,),P4(,-)
    考点:一次函数综合题.
    18、(1)乙将被录用;(2)甲将被录用
    【解析】
    (1)根据平均数的计算公式分别进行计算即可;
    (2)根据加权平均数的计算公式分别进行解答即可.
    【详解】
    解:(1)∵=(85+90+80)÷3=85(分),
    =(95+80+95)÷3=90(分),
    ∴<,
    ∴乙将被录用;
    (2)根据题意得:
    ==87(分),
    ==86(分);
    ∴>,
    ∴甲将被录用.
    故答案为(1)乙将被录用;(2)甲将被录用.
    本题主要考查平均数,解题的关键是熟练掌握算术平均数和加权平均数的计算公式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.
    【详解】
    解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,
    ∴可把a,b看成是方程x2-7x+2=0的两个根,
    ∴a+b=7,ab=2,
    ∴===.
    故答案为:.
    本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab是解题的关键.
    20、2或或
    【解析】
    分以下三种情况求解:(1)点P在CD上,如图①,根据菱形的边长以及CP1=2DP1可得出结果;(2)点P在对角线AC上,如图②,在三角形CDP2中,可得出∠P2DC=90°,进而可得出DP2的长;(3)当点P在边AD上,如图③,过点D作于点F,过点作于点E,设,则,再用含x的代数式表示出CE,EP3,CP3的长,根据勾股定理列方程求解即可.
    【详解】
    解:(1)当点P在CD上时,如解图①,
    ,,;
    (2)当点P在对角线AC上时,如解图②,
    ,.
    当时,,;
    图① 图②
    (3)当点P在边AD上时,如解图③,过点D作于点F,过点作于点E,设,则,
    ,,,,
    ,,
    .
    ,在中,由勾股定理得,解得,(舍).
    综上所述,DP的长为2或或.
    故答案为:2或或.
    本题主要考查菱形的性质,含30°直角三角形的性质以及勾股定理,在解答无图题时注意分类讨论,避免漏解.
    错因分析 较难题.出错原因:①不能全面考虑所有情况,即根据动点在每一条边上进行分类讨论求解;②在第三种情况下不能将已知条件有效利用,转化到一个三角形中通过勾股定理列方程求解.
    21、
    【解析】
    由抛物线的顶点坐标为(4,3),可设其解析式为,再将(0,)代入求出a的值即可.
    【详解】
    解:由图知,抛物线的顶点坐标为(4,3),
    故设抛物线解析式为,
    将点(0,)代入,得:,
    解得,
    则抛物线解析式为,
    故答案为:.
    本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
    22、
    【解析】
    如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.
    ∵四边形OABC是菱形,
    ∴AC⊥OB,GC=AG,OG=BG=2,A. C关于直线OB对称,
    ∴PC+PD=PA+PD=DA,
    ∴此时PC+PD最短,
    在RT△AOG中,AG=,
    ∴AC=2,
    ∵OA⋅BK=⋅AC⋅OB,
    ∴BK=4,AK==3,
    ∴点B坐标(8,4),
    ∴直线OB解析式为y=x,直线AD解析式为y=−x+1,
    由,解得,
    ∴点P坐标(,).
    故答案为:(,).
    点睛:本题考查了菱形的性质、轴对称-最短路径问题、坐标与图象的性质等知识,解题的关键是正确找到点P的位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.
    23、1或
    【解析】
    试题解析:如图(一)所示,
    AB是矩形较短边时,
    ∵矩形ABCD,
    ∴OA=OD=BD;
    ∵OE:ED=1:3,
    ∴可设OE=x,ED=3x,则OD=2x
    ∵AE⊥BD,AE=,
    ∴在Rt△OEA中,x2+()2=(2x)2,
    ∴x=1
    ∴BD=1.
    当AB是矩形较长边时,如图(二)所示,
    ∵OE:ED=1:3,
    ∴设OE=x,则ED=3x,
    ∵OA=OD,
    ∴OA=1x,
    在Rt△AOE中,x2+()2=(1x)2,
    ∴x=,
    ∴BD=8x=8×=.
    综上,BD的长为1或.
    二、解答题(本大题共3个小题,共30分)
    24、(1),;(1)买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.
    【解析】
    (1)活动1:10支毛笔的付款金额,加上(x-10)本练习本的付款金额即可;活动1:将10支毛笔和x本练习本的总金额乘以0.9即可.
    (1)可以任意选择一个优惠活动,也可两个活动同时选择,三种方案进行对比即可.
    【详解】
    (1)
    (1)第三种方案:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1,此时实际付款金额
    显然
    令,得
    解得
    因此当时,最优惠的购买方案为:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.
    本题考查一次函数的应用,理解两种优惠活动的付款金额计算方式是解题的关键.
    25、,的度数分别为,.
    【解析】
    连接AD,由条件AB∥DE,AF∥CD,进一步可得,再在四边形ABCD中,用四边形内角和是360°求出即可.
    【详解】
    解:连接.
    ∵AB∥DE,
    ∴.
    ∵AF∥CD,
    ∴.
    ∵,
    ∴,
    .
    在四边形中,.
    ∵,
    ∴.
    ∴,的度数分别为,.
    本题需要熟练运用平行线的性质和四边形内角和定理进行求解,解题的关键是连接AD,先将转化为,再用四边形内角和是360°求解,需要注意的是在用四边形内角和求时用到了整体思想.
    26、(1)k= ,b= ;(2)
    【解析】
    (1)根据待定系数法可求出解析式,得到k、b的值;
    (2)根据函数解析式与坐标轴的交点,可利用面积公式求出四边形的面积.
    【详解】
    (1)M为l1与l2的交点
    令M(1,y),代入y=2x+4中,解得y=2,
    即M(1,2),
    将M(1,2)代入y=kx+b,得k+b=2①
    将A(-2,0)代入y=kx+b,得-2k+b=0②
    由①②解得k=,b=
    (2)解:由(1)知l2:y=x+ ,当x=0时
    y= 即OB=
    ∴S△AOB= OA·OB= ×2× =
    在y=-2x+4令y=0,得N(2,0)
    又因为A(-2,0),故AN=4
    所以S△AMN= ×AN×ym= ×4×2=4
    故SMNOB=S△AMN-S△AOB=4-=.
    考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.
    题号





    总分
    得分
    批阅人
    应聘者
    阅读能力
    思维能力
    表达能力

    85
    90
    80

    95
    80
    95
    相关试卷

    重庆市綦江中学2024-2025学年数学九上开学考试模拟试题【含答案】: 这是一份重庆市綦江中学2024-2025学年数学九上开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市綦江县名校2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份重庆市綦江县名校2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市綦江县名校2024年数学九年级第一学期开学检测模拟试题【含答案】: 这是一份重庆市綦江县名校2024年数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map