重庆市梁平区2024年九年级数学第一学期开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )
A.经过第一、二、四象限B.与x轴交于(1,0)
C.与y轴交于(0,1)D.y随x的增大而减小
2、(4分)等腰三角形的一个角为50°,则这个等腰三角形的底角为( )
A.65°B.65°或80°C.50°或65°D.40°
3、(4分)为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为( )吨.
A.1B.1.1C.1.13D.1.2
4、(4分)给出下列化简①()2=2:②2;③12;④,其中正确的是( )
A.①②③④B.①②③C.①②D.③④
5、(4分)人体血液中,红细胞的直径约为0.0000077m.用科学记数法表示0.0000077m是( )
A.0.77×10﹣5B.7.7×10﹣5C.7.7×10﹣6D.77×10﹣7
6、(4分)若点A(2,3)在函数y=kx的图象上,则下列各点在此丽数图象上的是( )
A.(1,)B.(2,-3)C.(4,5)D.(-2,3)
7、(4分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是( )
A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)
8、(4分)如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是( )
A.x>0B.x<0C.x>1D.x<1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线y=kx+b与直线y=2x交于点P(1,m),则不等式2x
A.B.C.D.
11、(4分)关于 x 的方程 x2+5x+m=0 的一个根为﹣2,则另一个根是________ .
12、(4分)一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.
13、(4分)在△ABC中,AB=17cm,AC=10cm,BC边上的高等于8cm,则BC的长为_____cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,菱形的对角线和交于点,,,求和的长.
15、(8分)如图,矩形的对角线交于点,且.
(1)求证:四边形是菱形;
(2)若,求菱形的面积.
16、(8分)如图,在中,于点D,E是的中点,若,求的长.
17、(10分)解不等式组把解集表示在数轴上,并求出不等式组的整数解.
18、(10分)分解因式
(1)20a3-30a2
(2)25(x+y)2-9(x-y)2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)超速行驶是交通事故频发的主要原因之一.交警部门统计某天 7:00—9:00 经过高速公路某测速点的汽车的速度,得到频数分布折线图.若该路段汽车限速为110km/h,则超速行驶的汽车有_________辆.
20、(4分)如图,三个边长均为1的正方形按如图所示的方式摆放,A1,A2分别是正方形对角线的交点,则重叠部分的面积和为______.
21、(4分)正比例函数图象与反比例函数图象的一个交点的横坐标为,则______.
22、(4分)如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4,则□ABCD的面积等于________.
23、(4分)在函数y=中,自变量x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,将的边延长至点,使,连接,,,交于点.
(1)求证:;
(2)若,求证:四边形是矩形.
25、(10分)如图,在中,点是对角线的中点,点在上,且,连接并延长交于点F.过点作的垂线,垂足为,交于点.
(1)求证:;
(2)若.
①求证:;
②探索与的数量关系,并说明理由.
26、(12分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
【详解】
将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,
A、直线y=x+1经过第一、二、三象限,错误;
B、直线y=x+1与x轴交于(﹣1,0),错误;
C、直线y=x+1与y轴交于(0,1),正确;
D、直线y=x+1,y随x的增大而增大,错误,
故选C.
本题主要考查了一次函数图象与几何变换,正确把握变换规律以及一次函数的图象和性质是解题的关键.
2、C
【解析】
已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.
【详解】
当50°是等腰三角形的顶角时,则底角为(180°﹣50°)×=65°;
当50°是底角时也可以.
故选C.
本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
3、C
【解析】
根据加权平均数的公式进行计算即可得.
【详解】
=1.13(吨),
所以这100户平均节约用水的吨数为1.13吨,
故选C.
本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解题的关键.
4、C
【解析】
根据二次根式的性质逐一进行计算即可求出答案.
【详解】
①原式=2,故①正确;
②原式=2,故②正确;
③原式,故③错误;
④原式,故④错误,
故选C.
本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.
5、C
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:
故选C.
6、A
【解析】
由点A的坐标,利用待定系数法可求出一次函数解析式,再利用一次函数图象上点的坐标特征逐一验证四个选项中的点是否在该函数图象上即可得出结论.
【详解】
将A(2,3)代入y=kx,得:3=2k,
∴k=,
∴一次函数的解析式为y=x.
当x=1时,y=×1=,
∴点(1,)在函数y=的图象上;
当x=2时,y=×2=3,
∴点(2,-3)不在函数y=的图象上;
当x=4时,y=×4=6,
点(4,5)不在函数y=的图象上;
当x=-2时,y=×(-2)=-3,
点(-2,3)不在函数y=的图象上.
故选:A.
考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征逐一验证四个选项中的点是否在该函数图象上是解题的关键.
7、D
【解析】
∵点(2,-4)在反比例函数y=的图象上,
∴k=2×(-4)=-1.
∵A中2×4=1;B中-1×(-1)=1;C中-2×(-4)=1;D中4×(-2)=-1,
∴点(4,-2)在反比例函数y=的图象上.
故选D.
本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.
8、B
【解析】
直接根据函数的图象与y轴的交点为(0,1)进行解答即可:
【详解】
解:由一次函数的图象可知,此函数是减函数,
∵一次函数y=kx+b的图象与y轴交于点(0,1),
∴当x<0时,关于x的不等式kx+b>1.故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<1
【解析】
根据两直线的交点坐标和函数的图象即可求出答案.
【详解】
∵直线y1=kx+b与直线y2=2x交于点P(1,m),
∴不等式2x<kx+b的解集是x<1,
故答案是:x<1.
考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
10、A
【解析】
根据一元二次方程的根的定义,将根代入进行求解.
【详解】
∵x=−2是方程的根,由一元二次方程的根的定义,可得(−2)2+2k−6=0,
解此方程得到k=1.
故选:A.
考查一元二次方程根的定义,使方程左右两边相等的未知数的值就是方程的解,又叫做方程的根.
11、
【解析】
解:设方程的另一个根为n,
则有−2+n=−5,
解得:n=−3.
故答案为
本题考查一元二次方程的两根是,则
12、1
【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.
【详解】
如图,由题意知,AB=5,AC=6,
∴AO=OC=3,
∵菱形对角线互相垂直平分,
∴△ABO为直角三角形,
在Rt△ABO中,AB=5,AO=3,
∴BO==4,
故BD=2BO=1,
故答案为: 1.
本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.
13、9或1
【解析】
利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况求出BC的长度.
【详解】
解:过点A作AD⊥BC于D,
由勾股定理得,BD==15(cm),
CD==6(cm),
如图1,BC=CD+BD=1(cm),
如图2,BC=BD﹣CD=9(cm),
故答案为:9或1.
本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点在于要分情况讨论.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
依据菱形的性质可得Rt△ABO中∠ABO=30°,则可得AO和BO长,根据AC=2AO和BD=2BO可得结果.
【详解】
解:菱形中,,
又,
所以,三角形为等边三角形,
所以,;
,
本题主要考查了菱形的性质,解决菱形中线段的长度问题一般转化为在直角三角形中利用勾股定理求解.
15、(1)证明见解析;(2)
【解析】
(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.
(2)解直角三角形求出BC=3,AB=DC=,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=,求出OE=2OF=3,求出菱形的面积即可.
【详解】
解:(1)∵,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OC=AC,OD=BD,
∴OC=OD,
∴四边形OCED是菱形;
(2)在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=6,
∴BC=AC=3,
∴AB=DC=,
连接OE,交CD于点F,
∵四边形ABCD为菱形,
∴F为CD中点,
∵O为BD中点,
∴OF=BC=,
∴OE=2OF=3,
∴S菱形OCED=×OE×CD=×3×=.
本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.
16、DE=2.5.
【解析】
利用勾股定理列式求出AC,再根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
∵,
∴,
∵E是的中点,
∴.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
17、原不等式组的解集为,不等式组的整数解是
.数轴见详解
【解析】
先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集在数轴上表示出来,再取整数解.
【详解】
由①得x≥−
由②得x<3
∴原不等式组的解集为−≤x<3
数轴表示:
不等式组的整数解是-1,0,1,1.
18、(1)10a2(2a﹣3)(2)4(4x+y)(x+4y)
【解析】
分析:(1)利用提公因式法,找到并提取公因式10a2即可;
(2)利用平方差公式进行因式分解,然后整理化简即可.
详解:(1)解:20a3﹣30a2=10a2(2a﹣3)
(2)解:25(x+y)2﹣9(x﹣y)2
=[5(x+y)+3(x﹣y)][5(x+y)﹣3(x﹣y)]
=(8x+2y)(2x+8y);
=4(4x+y)(x+4y) .
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
一、填空题(本大题共5个小题,每小题4分,共20分)
19、80.
【解析】
根据图中的信息,找到符合条件的数据,进行计算即可.
【详解】
解:读图可知,超过限速110km/h的汽车有60+20=80(辆).
故答案为80.
本题考查读取频数分布折线图和利用统计图获取信息的能力,对此类问题,必须要认真观察统计图、分析比较,充分利用图中的数据,从而作出正确判断.
20、
【解析】
过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的,即可求解.
【详解】
如图,过点A1分别作正方形两边的垂线A1D与A1E,
∵点A1是正方形的中心,
∴A1D=A1E,
∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,
∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,
∴△A1BD≌△A1CE(ASA),
∴△A1BD的面积=△A1CE的面积,
∴两个正方形的重合面积=正方形面积=,
∴重叠部分的面积和为×2=.
故答案是:.
考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是正方形的面积的是解题的关键.
21、4
【解析】
把x=代入各函数求出对应的y值,即可求解.
【详解】
x=代入得
x=代入得
∴4
此题主要考查反比例函数的性质,解题的关键是根据题意代入函数关系式进行求解.
22、16
【解析】
根据等边三角形性质求出OA=OB=AB,根据平行四边形性质推出AC=BD,根据矩形的判定推出平行四边形ABCD是矩形;求出AC长,根据勾股定理求出BC,根据矩形的面积公式求出即可.
【详解】
∵△AOB是等边三角形,
∴OA=OB=AB=4,
∵四边形ABCD是平行四边形,
∴AC=2OA,BD=2OB,
∴AC=BD,
∴平行四边形ABCD是矩形.
∵OA=AB=4,AC=2OA=8,四边形ABCD是矩形,
∴∠ABC=90°,
∵在Rt△ABC中,由勾股定理得:BC=,
∴▱ABCD的面积是:AB×BC=4×4=16.
此题考查矩形的判定与性质,平行四边形的性质,勾股定理,等边三角形的性质,解题关键在于求出AC长.
23、x≥﹣2且x≠1
【解析】
分析:
根据使分式和二次根式有意义的条件进行分析解答即可.
详解:
∵要使y=有意义,
∴ ,解得:且.
故答案为:且.
点睛:熟记:“二次根式有意义的条件是:被开方数是非负数;分式有意义的条件是:分母的值不为0”是正确解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析.
【解析】
(1)由平行四边形的性质可得,,可得,由“”可证;
(2)由一组对边平行且相等可证四边形是平行四边形,由对角线相等的平行四边形是矩形可证平行四边形是矩形.
【详解】
(1)∵四边形是平行四边形
∴
∴
又∵
∴
(2)∵,
∴
∴四边形是平行四边形,∴AE=2AO,BC=2BO,
又∵,
∴
∴
∴
∴是矩形
本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的性质,灵活运用这些性质进行推理是本题的关键.
25、(1)见解析;(2)①见解析,②,理由见解析.
【解析】
(1)根据平行四边形的性质得到∠OAF=∠OCE,证明△OAF≌△OCE,根据全等三角形的对应边相等证明结论;
(2)①过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,根据三角形的外角性质得到∠BAG=∠BGA;
②证明△AME≌△BNG,根据全等三角形的性质得到ME=NG,根据等腰直角三角形的性质得到BE=GC,根据(1)中结论证明即可.
【详解】
(1)证明:∵四边形是平行四边形,
∴,,
∴,
在和中,
,
∴
∴,
∵,
∴;
(2)①过作于,交于,过作于,
则,
∵,
∴,
∵,
∴,,
∵,
∴,又,
∴,
设,
则,,
∴;
②,
理由如下:∵,
∴,
∴,
在和中,
,
∴,
∴,
在等腰中,,
∴,
∴,
∵,
∴.
本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.
26、
【解析】
设CE=EC'=x,则DE=3−x,由△ADB''∽△DEC,可得ADDE=DB'EC′,列出方程即可解决问题;
【详解】
设CE=EC'=x,则DE=3−x,
∵∠ADB'+∠EDC'=90°,∠B'AD+∠ADB'=90°,
∴∠B'AD=∠EDC',
∵∠B'=∠C'=90°,AB'=AB=3,AD=5,
∴DB'= = ,
∴△ADB'∽△DEC`,
∴ ,
∴ ,
∴x= .
∴CE=.
此题考查翻折变换(折叠问题),相似三角形的判定与性质,解题关键在于利用勾股定理进行计算
题号
一
二
三
四
五
总分
得分
批阅人
每户节水量(单位:吨)
1
1.2
1.5
节水户数
65
15
20
重庆市綦江区2024年九年级数学第一学期开学考试试题【含答案】: 这是一份重庆市綦江区2024年九年级数学第一学期开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市江津区名校2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份重庆市江津区名校2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届重庆市綦江区九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2025届重庆市綦江区九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。