重庆市九龙坡区七校联考2024年九上数学开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在□ABCD中,ABAC,若AB=4,AC=6,则BD的长是( )
A.11B.10C.9D.8
2、(4分)菱形 ABCD 中,已知:AC=6,BD=8,则此菱形的边长等于( )
A.6B.8C.10D.5
3、(4分)如图是本地区一种产品30天的销售图像,图1是产品销售量y(件)与时间t(天)的函数关系,图2是一件产品的销售利润z(元)与时间t(天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是( ).
A.第24天的销售量为200件B.第10天销售一件产品的利润是15元
C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元
4、(4分)菱形的两条对角线长分别为12与16,则此菱形的周长是( )
A.10B.30C.40D.100
5、(4分)一个三角形的三边分别是6、8、10,则它的面积是( )
A.24B.48C.30D.60
6、(4分)已知是完全平方式,则的值为( )
A.6B.C.12D.
7、(4分)已知一次函数y=kx+b的图象如图,则k、b的符号是( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
8、(4分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次函数的最大值是____________.
10、(4分)已知反比例函数的图像经过点、,则k的值等于_____.
11、(4分)某种型号的空调经过两次降价,价格比原来下降了36%,则平均每次下降的百分数是_____%.
12、(4分)如图,在平面直角坐标系中,直线y=x-1与矩形OABC的边BC、OC分别交于点E、F,已知OA=3,OC=4,则的面积是_________.
13、(4分)如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD是菱形,AC=24, BD=10,DH⊥AB 于点H,求菱形的面积及线段DH的长.
15、(8分)如图,一架长的梯子斜靠在一竖直的墙上,,这时.如果梯子的顶端沿墙下滑,那么梯子底端也外移吗?
16、(8分)解不等式组
17、(10分)如图,在直角坐标系中,直线与轴分别交于点、点,直线交于点,是直线上一动点,且在点的上方,设点.
(1)当四边形的面积为38时,求点的坐标,此时在轴上有一点,在轴上找一点,使得最大,求出的最大值以及此时点坐标;
(2)在第(1)问条件下,直线左右平移,平移的距离为. 平移后直线上点,点的对应点分别为点、点,当为等腰三角形时,直接写出的值.
18、(10分)如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)
(1)求直线AB的函数的表达式;
(2)直接写出不等式(kx+b)﹣ax<0的解集;
(3)求△AOC的面积;
(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .
20、(4分)若分式的值为0,则x =_________________.
21、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)
22、(4分)菱形的两条对角线分别为18cm与24cm,则此菱形的周长为_____.
23、(4分)如图(1)所示,在Rt△ABC中,∠B=90°,AB=4,BC=3,将△ABC沿着AC翻折得到△ADC,如图(2),将△ADC绕着点A旋转到△AD′C′,连接CD′,当CD′∥AB时,四边形ABCD的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.
(1)请问今年A型智能手表每只售价多少元?
(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
25、(10分)已知:如图,在△ABC中,∠A=120°,AB=4,AC=2.求BC边的长.
26、(12分)(1)计算:
(2)已知:x=+1,求x2﹣2x的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
利用平行四边形的性质可知AO=2,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=1.
【详解】
解:∵四边形ABCD是平行四边形,
∴BD=2BO,AO=OC=2.
在Rt△ABO中,利用勾股定理可得:BO=
∴BD=2BO=1.
故选:B.
本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.
2、D
【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
【详解】
解:如图:
解:∵四边形ABCD是菱形,
∵AC=6,BD=8,
∴OA=3,OB=4,
即菱形ABCD的边长是1.
故选:D.
本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.
3、C
【解析】
图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对A做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,做出对B的判断,分别求出第12天和第30天的销售利润,对C、D进行判断.
【详解】
解:A、根据图①可得第24天的销售量为200件,故正确;
B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,
得,z=-t+25(0≤t≤20),
当20<t≤30时候,由图2知z固定为5,则:
,,当t=10时,z=15,因此B也是正确的;
C、第12天的销售利润为:[100+(200-100)÷24×12](25-12)=2150元,第30天的销售利润为:150×5=750元,不相等,故C错误;
D、第30天的销售利润为:150×5=750元,正确;
故选C.
考查一次函数的图象和性质、分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.
4、C
【解析】
首先根据题意画出图形,然后由菱形的两条对角线长分别为12与16,利用勾股定理求得其边长,继而求得答案.
【详解】
解:∵如图,菱形ABCD中,AC=16,BD=12,
∴OA=AC=8,OB=BD=6,AC⊥BD,
∴AB==10,
∴此菱形的周长是:4×10=1.
故选:C.
此题考查了菱形的性质以及勾股定理.注意根据题意画出图形,结合图形求解是解此题的关键.
5、A
【解析】
先根据勾股定理逆定理证明三角形是直角三角形,再利用面积法代入求解即可.
【详解】
∵,
∴三角形是直角三角形,
∴面积为:.
故选A.
本题考查勾股定理逆定理的应用,关键在于熟悉常用的勾股数.
6、D
【解析】
根据完全平方式的结构特征,即可求出m的值.
【详解】
解:∵是完全平方式,
∴;
故选择:D.
此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.
7、D
【解析】
由图可知,一次函数y=kx+b的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k、b的关系作答.
【详解】
解:由一次函数y=kx+b的图象经过二、三、四象限,
又有k<1时,直线必经过二、四象限,故知k<1,
再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.
故选:D.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
8、B
【解析】
由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-5
【解析】
根据二次函数的性质求解即可.
【详解】
∵的a=-2<0,
∴当x=1时,有最大值-5.
故答案为-5.
本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y=.
10、6
【解析】
根据反比例函数的性质,k=xy,把A、B坐标代入列出方程组求解即可得k的值。
【详解】
解:∵、在的图像上,
∴
解得:m=3,k=6
∴k=6
本题考查了反比例函数,熟练掌握待定系数法求函数解析式是关键。
11、20%.
【解析】
增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题求解.设平均每次下降的百分数是x,则根据题意可列方程(1-x)2=1-36%,解方程即可求解.注意根据实际意义进行值的取舍.
【详解】
设平均每次下降的百分数是x,根据题意得(1-x)2=1-36%
解方程得x1=0.2=20%,x2=1.8(舍去)
所以平均每次下降的百分数是20%.
故答案是:20%.
考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).
12、
【解析】
先根据直线的解析式求出点F的坐标,从而可得OF、CF的长,再根据矩形的性质、OC的长可得点E的横坐标,代入直线的解析式可得点E的纵坐标,从而可得CE的长,然后根据直角三角形的面积公式即可得.
【详解】
对于一次函数
当时,,解得
即点F的坐标为
四边形OABC是矩形
点E的横坐标为4
当时,,即点E的坐标为
则的面积是
故答案为:.
本题考查了一次函数的几何应用、矩形的性质等知识点,利用一次函数的解析式求出点E的坐标是解题关键.
13、×()1.
【解析】
已知正方形A1B1C1D1的边长为,然后得到正方形A2B2C2D2的边长为
,然后得到规律,即可求解.
【详解】
解:∵正方形A1B1C1D1的边长为,
正方形A2B2C2D2的边长为
正方形A3B3C3D3的边长为,
…,
正方形A2018B2018C2018D2018的边长为.
故答案为.
本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
先根据菱形的面积等于对角线乘积的一半求出菱形的面积,然后再根据勾股定理求出菱形的边长,利用菱形面积的以一求解方法,边长乘高即可求得DH的长.
【详解】
在菱形ABCD中,AC⊥BD,
∵AC=24,BD=10,
∴AO=AC=12,BO=BD=5,
S菱形ABCD =,
∴AB==13,
∵S菱形ABCD =AB·DH=120,
∴DH=.
本题考查了菱形的性质、勾股定理、菱形的面积等,注意菱形的面积等于对角线乘积的一半,也等于底乘高.
15、梯子的顶端沿墙下滑时,梯子底端并不是也外移,而是外移.
【解析】
先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
【详解】
解:∵在中,,,
∴.
∴
在中,,
∴.
∴
∴
∴梯子的顶端沿墙下滑时,梯子底端并不是也外移,
而是外移.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
16、1≤x<6.1
【解析】
分别解两个不等式,最后求公共部分即可.
【详解】
解:,
解不等式①得:x≥1,
解不等式②得:x<6.1,
所以不等式组的解集为:1≤x<6.1.
本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
17、(1)点D的坐标为(﹣2,10), 点M的坐标为(0,)时,|ME﹣MD|取最大值2;(2) 当△A′B′D为等腰三角形时,t的值为﹣2﹣4、4、﹣2+4或1
【解析】
(1)将x=-2代入直线AB解析式中即可求出点C的坐标,利用分割图形求面积法结合四边形AOBD的面积为38即可得出关于m的一元一次方程,解之即可得出m值,在x轴负半轴上找出点E关于y轴对称的点E′(-8,0),连接E′D并延长交y轴于点M,连接DM,根据三角形三边关系即可得出此时|ME-MD|最大,最大值为线段DE′的长度,由点D、E′的坐标利用待定系数法即可求出直线DE′的解析式,将x=0代入其中即可得出此时点M的坐标,再根据两点间的距离公式求出线段DE′的长度即可;
(2)根据平移的性质找出平移后点A′、B′的坐标,结合点D的坐标利用两点间的距离公式即可找出B′D、A′B′、A′D的长度,再根据等腰三角形的性质即可得出关于t的方程,解之即可得出t值,此题得解.
【详解】
(1)当x=﹣2时,y=,
∴C(﹣2,),
∴S四边形AOBD=S△ABD+S△AOB=CD•(xA﹣xB)+OA•OB=3m+8=38,
解得:m=10,
∴当四边形AOBD的面积为38时,点D的坐标为(﹣2,10).
在x轴负半轴上找出点E关于y轴对称的点E′(﹣8,0),连接E′D并延长交y轴于点M,连接DM,此时|ME﹣MD|最大,最大值为线段DE′的长度,如图1所示.
DE′=.
设直线DE′的解析式为y=kx+b(k≠0),
将D(﹣2,10)、E′(﹣8,0)代入y=kx+b,
,解得:,
∴直线DE′的解析式为y=x+,
∴点M的坐标为(0,).
故当点M的坐标为(0,)时,|ME﹣MD|取最大值2.
(2)∵A(0,8),B(﹣6,0),
∴点A′的坐标为(t,8),点B′的坐标为(t﹣6,0),
∵点D(﹣2,10),
∴B′D=,
A′B′==10,A′D=.
△A′B′D为等腰三角形分三种情况:
①当B′D=A′D时,有=,
解得:t=1;
②当B′D=A′B′时,有=10,
解得:t=4;
③当A′B′=A′D时,有10=,
解得:t1=﹣2﹣4(舍去),t2=﹣2+4.
综上所述:当△A′B′D为等腰三角形时,t的值为﹣2﹣4、4、﹣2+4或1.
考查了一次函数的综合应用、待定系数法求一次函数解析式、三角形的面积、一次函数图象上点的坐标特征、等腰三角形的性质以及两点间的距离公式,解题的关键是:(1)找出|ME-MD|取最大值时,点M的位置;(2)根据等腰三角形的性质找出关于t的方程.
18、(2)y=﹣x+2.(2)x<﹣2.(3)3;(4)(2,2)或(0,2)或P(2+,﹣)或(2﹣,).
【解析】
(2)利用待定系数法即可解决问题;
(2)观察图象写出直线y=kx+b的图象在直线y=ax的图象下方的自变量的取值范围即可;
(3)求出点C坐标,利用三角形的面积公式计算即可;
(4)分三种情形分别讨论求解即可解决问题;
【详解】
解:(2)依题意得:,
解得,
∴所求的一次函数的解析式是y=﹣x+2.
(2)观察图形可知:不等式(kx+b)﹣ax<0的解集;
x<﹣2.
(3)对于y=﹣x+2,令y=0,得x=2
∴C(2,0),
∴OC=2.
∴S△AOC=×2×3=3.
(4)
①当点P与B重合时,OP2=OC,此时P2(0,2);
②当PO=PC时,此时P2在线段OC的垂直平分线上,P2(2,2);
③当PC=OC=2时,设P(m.﹣m+2),
∴(m﹣2)2+(﹣m+2)2=4,
∴m=2±,
可得P3(2﹣,),P4(2+,﹣),
综上所述,满足条件的点P坐标为:(2,2)或(0,2)或P(2+,﹣)或(2﹣,).
本题考查一次函数综合题、一元一次不等式的解、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
∵100,80,x,1,1,这组数据的众数与平均数相等,
∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.
∴(100+80+x+1+1)÷5=1,解得,x=1.
∵当x=1时,数据为80,1,1,1,100,
∴中位数是1.
20、2
【解析】
根据分式值为0的条件进行求解即可.
【详解】
由题意,得x-2=0,
解得:x=2,
故答案为:2.
本题考查了分式值为0的条件,熟练掌握“分式值为0时,分子为0用分母不为0”是解题的关键.
21、甲
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵S甲2=0.18,S乙2=0.32,
∴S甲2<S乙2,
∴身高较整齐的球队是甲;
故答案为:甲.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
22、60cm
【解析】
试题分析:根据菱形的性质对角线互相垂直平分,利用勾股定理求出菱形的边长即可解决问题.
【详解】
解:如图,四边形ABCD是菱形,AC=24,BD=18,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=OC=12,OD=OB=9,AB=BC=CD=AD,
∴AD==1.
∴菱形的周长为=60cm.
故答案为60cm
【点评】
本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.
23、
【解析】
过点A作AE⊥AB交CD′的延长线于E,构造直角三角形,利用勾股定理即可.
【详解】
解:如图(2),过点A作AE⊥AB交CD′的延长线于E,由翻折得AD=AB=4
∵CD′∥AB
∴∠BCE+∠ABC=180°,
∵∠ABC=90°
∴∠BCE=90°
∵AE⊥AB
∴∠BAE=90°
∴ABCE是矩形,AD′=AD=AB=4
∴AE=BC=3,CE=AB=4,∠AEC=90°
∴D′E==
∴CD′=CE﹣D′E=4﹣
∴S四边形ABCD′=(AB+CD′)•BC=(4+4﹣)×3=,
故答案为:.
本题考查了勾股定理,矩形性质,翻折、旋转的性质,梯形面积等,解题关键对翻折、旋转几何变换的性质要熟练掌握和运用.
二、解答题(本大题共3个小题,共30分)
24、(1)180元;(2)方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.
【解析】
(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+60)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型a只,则B型(100-a)只,获利y元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.
【详解】
解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+60)元,
根据题意得 ,解得:x=180,
经检验,x=180是原方程的根,
答:今年A型智能手表每只售价180元;
(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100-a)只,
根据题意得,W=(180-130)a+(230-150)(100-a)=-30a+8000,
∵100-a≤3a,∴a≥25,
∵-30<0,W随a的增大而减小,
∴当a=25时,W增大=-30×25+8000=7250元,
此时,进货方案为新进A型手表25只,新进B型手表75只,
答:方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.
此题考查分式方程的应用,一次函数的运用,解题关键在于由销售问题的数量关系求出一次函数的解析式是关键.
25、.
【解析】
过点C作CD⊥BA,垂足为D.根据平角的定义可得∠DAC=60°,在Rt△ACD中,根据三角函数可求AD,BD的长;在Rt△BCD中,根据勾股定理可求BC的长.
【详解】
解:过点作,垂足为
∵
∴
在Rt中
∴
在Rt中
本题考查解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.同时考查了勾股定理.
26、(1);(2)1.
【解析】
(1)根据二次根式的乘除法和加减法可以解答本题;
(2)根据x的值和平方差公式可以解答本题.
【详解】
(1)
=
=
=2;
(2)∵x=+1,
∴x2﹣2x
=x(x﹣2)
=
=
=5﹣1
=1.
本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.
题号
一
二
三
四
五
总分
得分
A型智能手表
B型智能手表
进价
130元/只
150元/只
售价
今年的售价
230元/只
重庆市九龙坡区育才成功学校2025届九上数学开学检测试题【含答案】: 这是一份重庆市九龙坡区育才成功学校2025届九上数学开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省金华市义乌市七校联考2025届九上数学开学达标检测试题【含答案】: 这是一份浙江省金华市义乌市七校联考2025届九上数学开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
贵州省遵义汇川区六校联考2024年数学九上开学达标检测模拟试题【含答案】: 这是一份贵州省遵义汇川区六校联考2024年数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。