浙江省桐乡市2024-2025学年九上数学开学经典模拟试题【含答案】
展开
这是一份浙江省桐乡市2024-2025学年九上数学开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知点A的坐标为(3,﹣6),则点A所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,,则AB的长为( )
A.B.C.8D.
3、(4分)下列一次函数中,y随x增大而减小的是
A.B.C.D.
4、(4分)已知,则的值是( )
A.B.5C.D.6
5、(4分)下列多项式中能用完全平方公式分解的是( )
A.B.C.D.
6、(4分)一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为( )
A.B.C.D.
7、(4分)一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是( )
A.12B.13C.14D.12或14
8、(4分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在△ABC中,AB=,AC=5,若 BC 边上的高等于3,则BC边的长为_____.
10、(4分)小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.
11、(4分)将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.
12、(4分) “同旁内角互补,两直线平行”的逆命题是_____________________________.
13、(4分)函数:中,自变量x的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)A、B两城相距900千米,一辆客车从A城开往B城,车速为每小时80千米,半小时后一辆出租车从B城开往A城,车速为每小时120千米.设客车出发时间为t(小时)
(1)若客车、出租车距A城的距离分别为y1、y2,写出y1、y2关于t的函数关系式;
(2)若两车相距100千米时,求时间t;
(3)已知客车和出租车在服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案,方案一:继续乘坐出租车到C城,C城距D处60千米,加油后立刻返回B城,出租车加油时间忽略不计;方案二:在D处换乘客车返回B城,试通过计算,分析小王选择哪种方式能更快到达B城?
15、(8分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.
(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?
(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?
16、(8分)附加题:如图,四边形中,,设的长为,四边形的面积为.求与之间的关系式.
17、(10分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:
(1)补全条形统计图;
(2)求这30名职工捐书本数的平均数、众数和中位数;
(3)估计该单位750名职工共捐书多少本?
18、(10分)(阅读理解)
对于任意正实数、,∵,
∴
∴,只有当时,等号成立.
(数学认识)
在(、均为正实数)中,若为定值,则,只有当时,有最小值.
(解决问题)
(1)若时,当_____________时,有最小值为_____________;
(2)如图,已知点在反比例函数的图像上,点在反比例函数的图像上,轴,过点作轴于点,过点作轴于点.求四边形周长的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)抛物线,当时,的取值范围是__________.
20、(4分)如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.
21、(4分)如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.
22、(4分)如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=____________.
23、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在同一坐标系中,画出函数与的图像,观察图像写出当时,的取值范围.
25、(10分)如图,在平面直角坐标系中,直线EF交x,y轴子点F,E,交反比例函数(x>0)图象于点C,D,OE=OF=,以CD为边作矩形ABCD,顶点A与B恰好落在y轴与x轴上.
(1)若矩形ABCD是正方形,求CD的长;
(2)若AD:DC=2:1,求k的值.
26、(12分)当今,青少年用电脑手机过多,视力水平下降已引起了全社会的关注,某校为了解八年级1000名学生的视力情况,从中抽查了150名学生的视力情况,通过数据处理,得到如下的频数分布表.解答下列问题:
(1)分别指出参加抽测学生的视力的众数、中位数所在的范围;
(2)若视力为4.85以上(含4.85)为正常,试估计该校八年级学生视力正常的人数约为多少?
(3)根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数相应组中的权.请你估计该校八年级学生的平均视力是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.
【详解】
横纵坐标同是正数在第一象限,横坐标负数纵坐标正数在第二象限,横纵坐标同是负数在第三象限,横坐标正数纵坐标负数在第四象限,点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.
此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.
2、A
【解析】
由平行四边形ABCD中,OA=OB得到平行四边形ABCD是矩形,又,得到三角形AOD为等边三角形,再利用勾股定理得到AB的长.
【详解】
解:∵四边形ABCD为平行四边形,对角线AC、BD相交于点O,
∴OA=OC,OB=OD,
又∵OA=OB,
∴OA=OD=OB=OC,
∴平行四边形ABCD为矩形,∠DAB=90°,
而,
∴为等边三角形,
∴AD=OD=OA=OB=4,
在Rt中,AD=4,DB=2OD=8,
∴,
故选:A.
本题利用了矩形的判定和性质,等边三角形的判定及性质,勾股定理定理的应用求解.属于基础题.
3、D
【解析】
∵A,B,C中,自变量的系数大于0,∴y随x增大而增大;
∵D中,自变量的系数小于0,∴y随x增大而减小;
故选D.
4、D
【解析】
利用非负性,得到,解出与的值,即可解得.
【详解】
由
得:
则:
所以:,故答案选D.
本题考查了绝对值与二次根式的非负性,解答即可.
5、B
【解析】
能用完全平方公式分解的式子的特点是:三项;两项平方项的符号需相同;有一项是两平方项底数积的2倍,据此逐项分析即可.
【详解】
A. 中-x不是积的2倍,故不符合题意;
B. =(1-x)2,符合题意;
C. 中只有1个平方项,故不符合题意;
D. 两个平方项的符号不一致,故不符合题意;
故选B.
本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.两项平方项的符号需相同;有一项是两底数积的2倍,是易错点.
6、C
【解析】
设袋中红色幸运星有x个,根据“摸取到红色幸运星的频率稳定在0.5左右”列出关于x的方程,解之可得袋中红色幸运星的个数,再根据频率的定义求解可得.
【详解】
解:设袋中红色幸运星有x个,
根据题意,得:,
解得:x=35,
经检验:x=35是原分式方程的解,
则袋中红色幸运星的个数为35个,
若小明在盒子中随机摸取一颗幸运星,
则摸到黄色幸运星的频率为,
故选:C.
本题考查了频率的计算,解题的关键是设出求出红色幸运星的个数并熟记公式.
7、C
【解析】
解方程x2﹣7x+12=0,得 ,则等腰三角形的三边为4,4,6或3,3,6(舍去),易得等腰三角形的周长为4+4+6=14,故选C.
8、A
【解析】
已知AC和BD是对角线,取各自中点,则对角线互相平分(即AO=CO,BO=DO)的四边形是平行四边形.
【详解】
解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依据是对角线互相平分的四边形是平行四边形.
故选:A.
本题主要考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6或1
【解析】
△ABC中,∠ACB分锐角和钝角两种:
①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;
②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD-CD代入可得结论.
【详解】
解:有两种情况:
①如图1,∵AD是△ABC的高,
∴∠ADB=∠ADC=90°,
由勾股定理得:BD==1,
CD==4,
∴BC=BD+CD=5+1=6;
②如图2同理得:CD=4,BD=1,
∴BC=BD-CD=4-1=1,
综上所述,BC的长为6或1;
故答案为6或1.
本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.
10、1
【解析】
将这7个数按大小顺序排列,找到最中间的数即为中位数.
【详解】
解:这组数据从大到小为:27,1,1,1,42,42,46,
故这组数据的中位数1.
故答案为1.
此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算,难度一般.
11、y=-x+1.
【解析】
根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.
【详解】
解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,
∵经过点(2,1),
∴1=2a+1,解得:a=-1,
∴平移后的直线的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.
12、两直线平行,同旁内角互补
【解析】
分析:把一个命题的条件和结论互换就得到它的逆命题.命题“同旁内角互补,两直线平行”的条件是同旁内角互补,结论是两直线平行,故其逆命题是两直线平行,同旁内角互补.
详解:
命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角互补,
故答案为两直线平行,同旁内角互补.
点睛:考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
13、
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须,即.
三、解答题(本大题共5个小题,共48分)
14、(1)y1=80t,y2=﹣120t+960;(2)两车相距100千米时,时间为4.3小时或5.3小时;(3)选择方案一能更快到达B城,理由见解析
【解析】
(1)根据路程=速度×时间,即可得出y1、y2关于t的函数关系式;
(2)分两种情况讨论:①y2-y1=100;②y1-y2=100,据此列方程解答即可;
(3)先算出客车和出租车在服务站D处相遇的时间,再分别求出方案一、方案二所需的时间进行比较即可.
【详解】
(1)由题意得y1=80t
y2=900﹣120(t﹣0.5)=﹣120t+960
(2)如果两车相距100千米,分两种情况:
① y2﹣y1=100,即﹣120t+960﹣80t=100
解得t=4.3
② y1﹣y2=100,即80t﹣(﹣120t+960)=100
解得t=5.3
所以,两车相距100千米时,时间为4.3小时或5.3小时.
(3)如果两车相遇,即y1=y2,80t=﹣120t+960,解得t=4.8
此时AD=80×4.8=384(千米),BD=900﹣384=516(千米)
方案一:t1=(2×60+516)÷120=5.3(小时)
方案二:t2=516÷80=6.45(小时)
∵t2>t1
∴方案一更快
答:小王选择方案一能更快到达B城.
本题考查了一元一次方程的应用以及一次函数的应用,解题的关键根据数量关系找出方程(或函数关系式).本题属于中档题,难度不大,但较繁琐,解决此类型题目时,根据数量关系列出方程(或函数关系式),再一步步的进行计算即可.
15、(1)每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元(2)至少进货甲种空气净化器10台.
【解析】
(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,根据用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同,列出方程求解即可;
(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据进货花费不超过42000元,列出不等式求解即可.
【详解】
(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得:
,
解得:x=1200,
经检验得:x=1200是原方程的解,
则x+300=1500,
答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.
(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据题意得:
1200y+1500(30﹣y)≤42000,
y≥10,
答:至少进货甲种空气净化器10台.
本题考查分式方程和不等式的应用,分析题意,找到合适的等量关系列出方程和不等式是解决问题的关键.
16、
【解析】
过D作DE⊥AC与E点,设BC=a,则AC=4a,根据等角的余角相等得到∠1=∠3,易证得△ABC≌△DAE,所以AE=BC=a,DE=AC=4a,得到EC=AC-AE=4a-a=3a,在Rt△DEC中,根据勾股定理得到DC=5a,所以有x=5a,即;根据四边形ABCD的面积y=三角形ABC的面积+三角形ACD的面积,即可得到
【详解】
解:过作于点,如图
设,则,
而,
,
,
在中,
,即
又四边形的面积三角形的面积三角形的面积,
即与之间的关系式是
此题考查全等三角形的判定与性质,根据实际问题列二次函数关系式,解题关键在于作辅助线和证明△ABC≌△DAE.
17、(1)补图见解析(2)6;6;6;(3)4500本.
【解析】
(1)根据题意列式计算得到D类书的人数,补全条形统计图即可;
(2)根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数;
(3)用捐款平均数乘以总人数即可.
【详解】
(1)捐D类书的人数为:30-4-6-9-3=8,
补图如图所示;
(2)众数为:6 中位数为:6
平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;
(3)750×6=4500,
即该单位750名职工共捐书约4500本.
主要考查了中位数,众数,平均数的求法,条形统计图的画法,用样本估计总体的思想和计算方法;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
18、(1)1,1;(1)2.
【解析】
(1)根据题意,利用完全平方式即可求解;
(1)根据反比例函数的解析式,设出A和B的坐标,然后表示出周长,再根据上面的知识求解即可;
【详解】
解:(1)1,1.
(1)解:设,则,
∴四边形周长
.
∴四边形周长的最小值为2.
此题属于反比例函数综合题,考查了几何不等式的应用,理解在 (a, b均为正实数)中,若ab为定值k,则只有当a=b时,a+b有最小值是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴 ,判断范围内函数的增减性,进而计算y的范围.
【详解】
解:根据二次函数的解析式可得
由a=2>0,可得抛物线的开口向上
对称轴为:
所以可得在范围内,二次函数在 ,y随x的增大而减小,在 上y随x的增大而增大.
所以当 取得最小值,最小值为:
当取得最大值,最大值为:
所以
故答案为
本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.
20、-1
【解析】
根据平方差公式求出即可.
【详解】
解:∵a+b=8,a﹣b=﹣5,
∴a2﹣b2
=(a+b)(a﹣b)),
=8×(﹣5),
=﹣1,
故答案为:﹣1.
本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.
21、13.
【解析】
利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案
【详解】
利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13
本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线
22、3;
【解析】
先利用勾股定理求出BC的长,然后再根据中位线定理求出EF即可.
【详解】
∵直角三角形ABC中,∠C=90°,AB=10,AC=8,
∴BC==6,
∵点E、F分别为AB、AC的中点,
∴EF是△ABC的中位线,
∴EF=BC=×6=3,
故答案为3.
本题考查了勾股定理,三角形中位线定理,熟练掌握这两个定理的内容是解本题的关键.
23、(﹣5,4).
【解析】
首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.
【详解】
由题知A(3,0),B(-2,0),D在y轴上,
∴AB=3-(-2)=5,OA=3,BO=2,
由菱形邻边相等可得AD=AB=5,
在Rt△AOD中,由勾股定理得:
OD==4,
由菱形对边相等且平行得CD=BA=5,
所以C(-5,4).
故答案为(﹣5,4).
本题考查了菱形的性质及坐标与图形的性质,运用勾股定理求出OD的长是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、画图见解析,当时,的取值范围为 .
【解析】
分析:(1)利用两点法作出一次函数的图象,根据图象直接确定自变量的取值范围即可.
详解:建立平面直角坐标系
过画该直线 (如图)过画该直线.(如图)
∵ 解得
∴两直线的交点为 (如图)
根据图象当时,的取值范围为.
点睛:本题考查了一次函数的图象,作一次函数的图象时,可以利用两点法作图.
25、 (1);(2)k=12
【解析】
【分析】(1)根据等腰三角形的性质以及勾股定理可得EF的长,继而根据正方形的性质即可得DE=DC=CF,从而即可求得CD的长;
(2)由四边形ABCD是矩形,可得AD=BC,根据(1)得:AD=DE,BC=FC,且 2CD=AD,从而可得 2CD=DE=CF,根据DE+CD+FC=EF,继而可求得DE的长,作 DG⊥AE,垂足为点 G,在等腰直角三角形 ADE 中,求得DG=EG = 2,继而求得OG长,从而可得点D( 2, 3) ,即可求得k.
【详解】(1)∵四边形ABCD是正方形,
∴AB=BC=CD=AD,
∠ADC=∠BCD=90°,
∴∠ADE=∠BCF=90°,
∵OE=OF= 5,
又∵∠EOF=90°,
∴∠OEF=∠OFE=45°,FE=10,
∴CD=DE=AD=CB=CF=;
(2)∵四边形ABCD是矩形,
∴AD=BC,
∵由(1)得:AD=DE,BC=FC,且 2CD=AD,
∴2CD=DE=CF,
∵DE+CD+FC=EF,
∴DE= EF =4,
作 DG⊥AE,垂足为点 G,
由(1)得在等腰直角三角形 ADE 中,DG=EG=DE = 2,
∴OG=OE-EG= 5- 2= 3,
∴D( 2, 3) ,
得:k=12.
【点睛】本题考查了反比例函数与几何的综合,涉及到等腰直角三角形的性质、正方形的性质、矩形的性质等,熟练掌握相关性质和定理以及反比例函数比例系数k的几何意义是解题的关键.
26、(1)众数在4.85≤x<5.15的范围内,中位数在4.85≤x<5.15的范围内;(2)八年级视力正常的学生约有600人;(3)八年级1000名学生平均视力为4.1.
【解析】
(1)根据众数和中位数的定义,就是出现次数最多的数和中间的数(中间两数的平均数),据此即可判断;
(2)利用总人数1000乘以对应的比例即可求解;
(3)根据用样本估计总体解答即可.
【详解】
(1)众 数 在4.85≤x<5.15的范围内,
中位数在4.85≤x<5.15的范围内;
(2)依题意,八年级视力正常的学生约有人;
(3)依题意,抽样调查150名学生的平均视力为
,
由于可以用样本估计总体,
因此得到八年级1000名学生平均视力为4.1.
本题考查读频数分布表的能力和利用统计图表获取信息的能力;利用统计图表获取信息时,必须认真观察、分析、研究统计图表,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
视力范围分组
组中值
频数
3.95≤x<4.25
4.1
20
4.25≤x<4.55
4.4
10
4.55≤x<4.85
4.7
30
4.85≤x<5.15
5.0
60
5.15≤x<5.45
5.3
30
合计
150
相关试卷
这是一份上海延安中学2024-2025学年九上数学开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2025届浙江省嘉兴市桐乡数学九上开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江省温州市五校数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。