浙江省瑞安市2025届九上数学开学联考试题【含答案】
展开
这是一份浙江省瑞安市2025届九上数学开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法正确的是( )
A.了解全国中学生最喜爱哪位歌手,适合全面调查.
B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=1,S乙2=0.1,则甲麦种产量比较稳.
C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.
D.一组数据:3,2,1,1,4,6的众数是1.
2、(4分)将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是( )
A.向上平移3个单位 B.向下平移3个单位
C.向左平移7个单位 D.向右平移7个单位
3、(4分)下列说法中,错误的是( )
A.对角线互相垂直的四边形是菱形
B.对角线互相平分的四边形是平行四边形
C.菱形的对角线互相垂直
D.平行四边形的对角线互相平分
4、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是
④四边形AnBnCnDn的面积是
A.①②③B.②③④C.①②D.②③
5、(4分)若分式的值为0,则的值是( )
A.B.C.0D.3
6、(4分)若分式的值为0,则x的值为
A.3B.C.3或D.0
7、(4分)要得到函数y2x3的图象,只需将函数y2x的图象( )
A.向左平移3个单位B.向右平移3个单位
C.向下平移3个单位D.向上平移3个单位
8、(4分)如图,点是矩形的对角线的中点,是边的中点,若,则的长为( )
A.5B.6C.8D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.
10、(4分)分解因式_____.
11、(4分)边长为2的等边三角形的面积为__________
12、(4分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=____度.
13、(4分)如图,为正三角形,是的角平分线,也是正三角形,下列结论:①:②:③,其中正确的有________(填序号).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)求S△ABC的面积.
15、(8分)已知与成正比例,
(1)y是关于x的一次函数吗?请说明理由;
(2)如果当时,,求关于的表达式.
16、(8分)(实践探究)
如图①,正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的,你能说明这是为什么吗?
(拓展提升)
如图②,在四边形中,,,联结.若,求四边线的面积.
17、(10分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
(1)求点的坐标;
(2)求出的面积;
(3)当的值最小时,求此时点的坐标;
18、(10分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).
(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;
(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中有两点和点.则这两点之间的距离是________.
20、(4分)将正比例函数的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.
21、(4分)如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___
22、(4分)当x______时,在实数范围内有意义.
23、(4分)赵爽(约公元182~250年),我国历史上著名的数学家与天文学家,他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之为弦实.开方除之,即弦.”又给出了新的证明方法“赵爽弦图”,巧妙地利用平面解析几何面积法证明了勾股定理.如图所示的“赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如果小正方形的面积为1,直角三角形较长直角边长为4,则大正方形的面积为_____________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系xOy中,直线过A(0,—3),B(1,2).求直线的表达式.
25、(10分)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
26、(12分)阅读以下例题:解不等式:(x 4) (x 1) 1
解:①当 x 4 1 ,则 x 1 1
即可以写成:
解不等式组得:
②当若 x 4 1 ,则 x 1 1
即可以写成:
解不等式组得:
综合以上两种情况:不等式解集: x 1或.
(以上解法依据:若ab 1 ,则a,b 同号)请你模仿例题的解法,解不等式:
(1) (x 1)(x 2) 1;
(2) (x 2)(x 3) 1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断.
【详解】
A、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用
抽样调查的调查方式,故本选项错误;
、甲乙两种麦种连续3年的平均亩产量的方差为:,,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;
、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;
、.一组数据:3,2,1,1,4,6的众数是1,故本选项正确;.
故选.
本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.
2、C
【解析】
按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.
【详解】
依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.
故选C.
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
3、A
【解析】
根据平行四边形、菱形的判定和性质一一判断即可
【详解】
解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;
B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;
C、菱形的对角线互相垂直,正确,本选项不符合题意;
D、平行四边形的对角线互相平分,正确,本选项不符合题意;
故选:A.
本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、C
【解析】
首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
【详解】
①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故①错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故②正确;
③根据中位线的性质易知,A5B5=
∴四边形A5B5C5D5的周长是2×;
故③正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是.
故④正确;
综上所述,②③④正确.
故选C.
考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
5、D
【解析】
根据分式为零的条件,即可完成解答.
【详解】
解:由分式为零的条件得,x-3=0,x+2≠0,解得x=3;
故答案为D.
本题考查了分式为0的条件,即分子为零,分母不为0.
6、A
【解析】
根据分式的值为零的条件可以求出x的值.
【详解】
由分式的值为零的条件得x-1=2,且x+1≠2,
解得x=1.
故选A.
本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
7、D
【解析】
平移后相当于x不变y增加了3个单位,由此可得出答案.
【详解】
解:由题意得x值不变y增加3个单位
应向上平移3个单位.
故选:D.
本题考查一次函数图象的几何变换,注意平移k值不变的性质.
8、A
【解析】
由中位线定理可知CD的长,根据勾股定理求出AC的长,由直角三角形中斜边上的中线是斜边的一半可知OB长.
【详解】
解:点是的中点,是边的中点,
由矩形ABCD得
根据勾股定理得
故答案为:A
本题考查了直角三角形及中位线定理,熟练掌握直角三角形的特殊性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
根据题意可证明四边形EFGH为菱形,故可求出面积.
【详解】
∵四边形ABCD是矩形,
∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,
∵E、F、G、H分别是四条边的中点,
∴AE=DG=BE=CG,AH=DH=BF=CF,
∴△AEH≌△DGH≌△BEF≌△CGF(SAS),
∴EH=EF=FG=GH,
∴四边形EFGH是菱形,
∵HF=2,EG=4,
∴四边形EFGH的面积为HF·EG=×2×4=4.
此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.
10、
【解析】
提取公因数4,再根据平方差公式求解即可.
【详解】
故答案为:
本题考查了因式分解的问题,掌握平方差公式是解题的关键.
11、
【解析】
根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
【详解】
∵等边三角形高线即中点,AB=2,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴
∴
故答案为:
考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.
12、1
【解析】
首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.
【详解】
解:∵正五边形的外角为10°÷5=72°,
∴∠C=180°﹣72°=108°,
∵CD=CB,
∴∠CDB=1°,
∵AF∥CD,
∴∠DFA=∠CDB=1°,
故答案为1.
本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.
13、①②③
【解析】
由等边三角形的性质可得AE=AD,∠CAD=∠BAD=30°,AD⊥BC,可得∠BAE=∠BAD=30°,且AE=AD,可得EF=DF,“SAS”可证△ABE≌△ABD,可得BE=BD,即可求解.
【详解】
解:∵△ABC和△ADE是等边三角形,AD为∠BAC的角平分线,
∴AE=AD,∠CAD=∠BAD=30°,AD⊥BC,
∴∠BAE=∠BAD=30°,且AE=AD,
∴EF=DF
∵AE=AD,∠BAE=∠BAD,AB=AB
∴△ABE≌△ABD(SAS),
∴BE=BD
∴正确的有①②③
故答案为:①②③
本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) y=x2+2x﹣3;(2)1.
【解析】
(1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值;
(2)根据(1)中抛物线的解析式可求出C点的坐标,然后根据三角形的面积公式即可求出△ABC的面积.
【详解】
(1)当x=0时,y=x﹣3=﹣3,则B(0,﹣3);
当y=0时,x﹣3=0,解得x=3,则A(3,0),
把A(3,0),B(0,﹣3)代入y=x2+bx﹣c得,解得,
∴抛物线的解析式为y=x2+2x﹣3;
(2)当y=0时,x2+2x﹣3=0,解得x1=﹣1,x2=3,则C(﹣1,0),
∴S△ABC=×(3+1)×3=1.
本题主要考查了一次函数与坐标轴的交点,二次函数解析式的确定、三角形面积的求法等知识点.考查了学生数形结合的数学思想方法.
15、(1)y是x的一次函数,理由见解析;(2)
【解析】
试题分析:(1)根据题意设y-1=k(2x+3),整理得y=2kx+3k+1,然后根据一次函数的定义判断y是否是关于x的一次函数;(2)把x=-,y=0代入求出k即可得到y与x的函数关系.
试题解析:(1)依题意设,
所以,
故y是x的一次函数;
(2)把x=−,y=0代入得
−k+3k+1=0,解得k=3,
∴y关于x的函数表达式为y=6x+10.
16、(1)见解析;(2)18
【解析】
(1)由正方形的性质可得,,,由“”可证,可得,即可求解;
(2)过点作于点,于点,由“”可得,可得,,可得,由正方形的面积公式可求四边线的面积.
【详解】
解:(1)四边形是正方形
,,
,且,
,
两个正方形重叠部分的面积正方形的,
(2)过点作于点,于点,
,,
,且
,且,
,,
,
四边形是矩形,且
四边形是正方形
.
本题考查了旋转的性质,全等三角形的性质,正方形的性质,等腰直角三角形,添加恰当辅助线构造全等三角形是本题的关键.
17、 (1)点;(2);(3)点.
【解析】
(1)联立两直线解析式组成方程组,解得即可得出结论;
(2)将代入,求出OB的长,再利用 (1)中的结论点,即可求出的面积;
(3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.
【详解】
解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,
∴
解得:
∴点;
(2) ∵把代入,
解得:,
∴,
又∵点,
∴
;
(3) 如图,作点A(-3,0)关于y轴的对称点A'(3,0),
连接CA'交y轴于点P,此时,PC+PA最小,
最小值为CA'=,
由(1)知,,
∵A'(3,0),
∴直线A'C的解析式为,
∴点.
此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.
18、(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC的面积为10.
【解析】
【分析】(1) A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC边长为5,BC边上的高为4,再计算面积.
【详解】解:(1)直角坐标系如图所示.
图书馆的坐标为B(-2,-2).
(2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为×5×4=10.
【点睛】本题考核知识点:平面直角坐标系. 解题关键点:理解坐标的意义,利用坐标求出线段长度.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.
【详解】
如图,
∵A(5,0)和B(0,4),
∴OA=5,OB=4,
∴AB=,即这两点之间的距离是.
故答案为.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
20、
【解析】
根据“左加右减”的法则求解即可.
【详解】
解:将正比例函数的图象向右平移2个单位,
得=,
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
21、
【解析】
延长EF交CB于M,连接DM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,根据勾股定理即可得到结论.
【详解】
如图,
延长EF交CB于M,连接DM,
∵四边形ABCD是正方形,
∴AD=DC,∠A=∠BCD=90°,
∵将△ADE沿直线DE对折得到△DEF,
∴∠DFE=∠DFM=90°,
在Rt△DFM与Rt△DCM中,,
∴Rt△DFM≌Rt△DCM(HL),
∴MF=MC,
∴∠MFC=∠MCF,
∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,
∴∠MFB=∠MBF,
∴MB=MC,
∴MF=MC=BM=,设AE=EF=x,
∵BE2+BM2=EM2,
即(1-x)2+()2=(x+)2,
解得:x=,
∴AE=,
故答案为:.
本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
22、x≥-1且x≠1.
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.
【详解】
解:根据二次根式的意义,被开方数x+1≥0,解得x≥-1;
根据分式有意义的条件,x-1≠0,解得x≠1,
所以,x取值范围是x≥-1且x≠1
故答案为:x≥-1且x≠1.
本题考查二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数必须是非负数、分式分母不为0是解题的关键.
23、1
【解析】
观察图形可知,小正方形的面积为1,可得出小正方形的边长是1,进而求出直角三角形较短直角边长,再利用勾股定理得出大正方形的边长,进而求出答案.
【详解】
解:∵小正方形的面积为1,∴小正方形的边长是1,
∵直角三角形较长直角边长为4,∴直角三角形较短直角边长为:4-1=3,
∴大正方形的边长为:,
∴大正方形的面积为:5²=1,
故答案为:1.
本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
把A(0,-3),B(1,2)代入y=kx+b,利用待定系数法即可求出直线的表达式
【详解】
设,
将(0,-3)(1,2)代入得,
解得,
.
本题考查了一次函数式,利用待定系数法求出直线的表达式是解题的关键.
25、见解析
【解析】
由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=DF,易证四边形EBFD是平行四边形,即可得出结论.
【详解】
解:∵在平行四边形ABCD中,AB∥CD且AB=CD
又∵AE=CF
∴AB-AE=CD-CF
∴BE=DF
∴四边形EBFD是平行四边形
∴DE=BF.
本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
26、(1)x>2或 x<-1;(2)-2<x<2.
【解析】
(1)根据例题可得:此题分两个不等式组和,分别解出两个不等式组即可;
(2)根据两数相乘,异号得负可得此题也分两种情况和解出不等式组即可.
【详解】
解:(1)当x+1>1时,x-2>1,可以写成,
解得:x>2;
当x+1<1时,x-2<1,可以写成,
解得:x<-1,
综上:不等式解集:x>2或 x<-1;
(2)当x+2>1时,x-2<1,可以写成,
解得-2<x<2;
当x+2<1时,x-2>1,可以写成,
解得:无解,
综上:不等式解集:-2<x<2.
此题主要考查了不等式的解法,关键是正确理解例题的解题根据,然后再进行计算.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份浙江省瑞安市六校联盟2025届数学九年级第一学期开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省杭州拱墅区四校联考2024年九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省杭州北干2024年九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。