浙江省宁波市慈溪市部分学校2024年数学九年级第一学期开学统考试题【含答案】
展开这是一份浙江省宁波市慈溪市部分学校2024年数学九年级第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为( )
A.正五边形 B.正六边形 C.等腰梯形 D.平行四边形
2、(4分)某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在讯期前完成,采用新技术,工作效率比原来提升了25%.结果比原计划提前4天完成任务.设原计划每天修建管道x米,依题意列方程得( )
A.B.
C.D.
3、(4分)如图,直线与相交于点,点的横坐标为,则关于的不等式的解集在数轴上表示正确的是( )
A.B.
C.D.
4、(4分)已知P1(1,y1),P2(2,y2)是正比例函数y=-2x图象上的两个点,则y1、y2 的大小关系是( )
A.y1<y2B.y1>y2C.y1=y2D.y1≥y2
5、(4分)已知两点的坐标分别是(-2,3)和(2,3),则说法正确的是( )
A.两点关于x轴对称
B.两点关于y轴对称
C.两点关于原点对称
D.点(-2,3)向右平移两个单位得到点(2,3)
6、(4分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
7、(4分)下列函数中为正比例函数的是( )
A.B.C.D.
8、(4分)如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为( )
A.x>﹣2B.x<﹣2C.x>﹣5D.x<﹣5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,点A1,A2,A3…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果点A1(1,1),那么点A2019的纵坐标是_____.
10、(4分)如图,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,CD=6cm,则AB的长为 cm.
11、(4分)若方程组的解是,那么|a-b|= ______________.
12、(4分)甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)
13、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于的一元二次方程: ;
(1)求证:无论为何值,方程总有实数根;
(2)若方程的一个根是2,求另一个根及的值.
15、(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元
(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?
(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?
16、(8分)下表是厦门市某品牌专卖店全体员工9月8日的销售量统计资料.
(1)写出该专卖店全体员工9月8日销售量的众数;
(2)求该专卖店全体员工9月8日的平均销售量.
17、(10分)如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”。下图为点P、Q的“涵矩形”的示意图.
(1)点B的坐标为(3,0);
①若点P的横坐标为,点Q与点B重合,则点P、Q的“涵矩形”的周长为 .
②若点P、Q的“涵矩形”的周长为6,点P的坐标为(1,4),则点E(2,1),F(1,2),G(4,0)中,能够成为点P、Q的“涵矩形”的顶点的是 .
(2)四边形PMQN是点P、Q的“涵矩形”,点M在△AOB的内部,且它是正方形;
①当正方形PMQN的周长为8,点P的横坐标为3时,求点Q的坐标.
②当正方形PMQN的对角线长度为/2时,连结OM.直接写出线段OM的取值范围 .
18、(10分)解方程:x(x﹣3)=1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为_____.
20、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
21、(4分)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.
22、(4分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.
23、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对
他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=[])
25、(10分)如图1,在平面直角坐标系中,O为坐标原点,点A(﹣4,0),直线l∥x轴,交y轴于点C(0,3),点B(﹣4,3)在直线l上,将矩形OABC绕点O按顺时针方向旋转α度,得到矩形OA′B′C′,此时直线OA′、B′C′分别与直线l相交于点P、Q.
(1)当α=90°时,点B′的坐标为 .
(2)如图2,当点A′落在l上时,点P的坐标为 ;
(3)如图3,当矩形OA′B′C′的顶点B′落在l上时.
①求OP的长度;②S△OPB′的值是 .
(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出点B′和点P的坐标;如果不能,请简要说明理由.
26、(12分)某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量yA(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:
(1)求yB关于x的函数解析式;
(2)如果A,B两种机器人连续搬运5小时,那么B种机器人比A种机器人多搬运了多少千克?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】A.正五边形是轴对称图形,但不是中心对称图形,故A错;
B.正六边形既是轴对称图形,又是中心对称图形,故B错;
C. 等腰梯形是轴对称图形,但不是中心对称图形,故C错;
D. 平行四边形是中心对称图形,但不是轴对称图形,故D正确;
故选D.
2、B
【解析】
设原计划每天修建管道x米,则原计划修建天数为天.实际前面400米,每天修建管道x米,需要天,剩下的1200-400=800米,每天修建管道x (1+25%)米,需要天. 根据实际天数比原计划提前4天完成任务即可得出数量关系.
【详解】
设原计划每天修建管道x米,
根据题意的– =4,
- - =4,
- =4,
选项B正确.
本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;难点是得到实际修建的天数.
3、C
【解析】
由图像可知当x<-1时,,然后在数轴上表示出即可.
【详解】
由图像可知当x<-1时,,
∴可在数轴上表示为:
故选C.
本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1>y2时x的范围是函数y1的图象在y2的图象上边时对应的未知数的范围,反之亦然.
4、B
【解析】
由y=-1x中k=-1<0,可知y随x的增大而减小,再结合1<1即可得出y1、y1的大小关系.
【详解】
解:∵正比例函数y=-1x中,k=-1<0,
∴y随x增大而减小,
∵1<1,
∴y1>y1.
故选:B.
本题考查了正比例函数的图象与性质,注意:y=kx(k≠0)中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
5、B
【解析】
几何变换.
根据关于y轴对称的点坐标横坐标互为相反数,纵坐标相等,可得答案.
【详解】
解:∵两点的坐标分别是(-2,3)和(2,3),横坐标互为相反数,纵坐标相等,
∴两点关于y轴对称,
故选:B.
本题考查了关于y轴对称的点坐标,利用关于y轴对称的点坐标横坐标互为相反数,纵坐标相等是解题关键.
6、C
【解析】
【分析】根据一次函数的图象与系数的关系进行解答即可.
【详解】∵一次函数y=kx+b的图象经过一、二、四象限,
∴k<0,b>0,
故选C.
【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.
7、C
【解析】
根据正比例函数的定义y=kx(k≠0)进行判断即可.
【详解】
解:A项是二次函数,不是正比例函数,本选项错误;
B项,是反比例函数,不是正比例函数,本选项错误;
C项,是正比例函数,本选项正确;
D项,是一次函数,不是正比例函数,本选项错误.
故选C.
本题考查了正比例函数的概念,熟知正比例函数的定义是判断的关键.
8、A
【解析】
函数y1=3x+b和y1=ax﹣3的图象交于点P(﹣1,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y1=3x+b的图像在函数y1=ax﹣3的图象上面,据此进一步求解即可.
【详解】
从图像得到,当x>﹣1时,y1=3x+b的图像对应的点在函数y1=ax﹣3的图像上面,
∴不等式3x+b>ax﹣3的解集为:x>﹣1.
故选:A.
本题主要考查了一次函数与不等式的综合运用,熟练掌握相关方法是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设点A2,A3,A4…,A1坐标,结合函数解析式,寻找纵坐标规律,进而解题.
【详解】
∵A1(1,1)在直线y=x+b,
∴b=,
∴y=x+,
设A2(x2,y2),A3(x3,y3),A4(x4,y4),…,A1(x1,y1)
则有 y2=x2+,
y3=x3+,
…
y1=x1+.
又∵△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
…
x1=2y1+2y2+2y3+…+2y2+y1.
将点坐标依次代入直线解析式得到:
y2=y1+1
y3=y1+y2+1= y2
y4= y3
…
y1=y2
又∵y1=1
∴y2= y3=()2
y4=()3
…
y1=()2
故答案为()2.
此题主要考查了 一次函数点坐标特点;等腰直角三角形斜边上高等于斜边长一半;找规律.
10、1.
【解析】
试题分析:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴线段CD是斜边AB上的中线;
又∵CD=6cm,
∴AB=2CD=1cm.
故答案是:1.
考点:直角三角形斜边上的中线.
11、1
【解析】
将代入中,得解得所以|a-b|=|1-2|=1.
12、不公平.
【解析】
试题分析:先根据题意画出树状图,然后根据概率公式求解即可.
画出树状图如下:
共有9种情况,积为奇数有4种情况
所以,P(积为奇数)=
即甲获胜的概率是
所以这个游戏不公平.
考点:游戏公平性的判断
点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.
13、1
【解析】
根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.
【详解】
解:根据勾股定理可得=52,
四个直角三角形的面积之和是:×4=52-4=48,
即2xy=48,
∴==52+48=1.
故答案是:1.
本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2),
【解析】
(1)根据根的判别式得出△=(k﹣3)2≥0,从而证出无论k取任何值,方程总有实数根.
(2)先把x=2代入原方程,求出k的值,再解这个方程求出方程的另一个根.
【详解】
(1)证明:(方法一).
∴无论为何值时,方程总有实数根.
(方法二)将代人方程,等式成立,即是原方程的解,
因此,无论为何值时,方程总有实数根,
(2)把代人方程解得,
解方程得
本题主要考查了一元二次方程的根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
15、 (1)A型设备最多购买5台;(2)A型设备至少要购买4台.
【解析】
(1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.
(2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.
【详解】
(1)设购买A型号的x台,购买B型号的为(10﹣x)台,
则:12x+10(10﹣x)≤110,
解得:x≤5,
答:A型设备最多购买5台;
(2)设购买A型号的a台,购买B型号的为(10﹣a)台,
可得:240a+180(10﹣a)≥2040,
解得:a≥4,
∴A型设备至少要购买4台.
本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.
16、(1)该专卖店全体员工9月8日销售量的众数是件;(2)该专卖店全体员工9月8日的平均销售量是件.
【解析】
(1)由题意直接根据众数的定义进行分析求解可得;
(2)由题意直接根据加权平均数的定义列式并进行计算可得.
【详解】
解:(1) 该专卖店全体员工9月8日销售量的众数是件.
答:该专卖店全体员工9月8日销售量的众数是件.
(2)(件)
答:该专卖店全体员工9月8日的平均销售量是件.
本题主要考查众数和加权平均数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
17、(1)①1,②(1,2);(2)①(1,5)或(5,1),②
【解析】
(1)①根据题意求出PE,EQ即可解决问题.
②求出点P、Q的“涵矩形”的长与宽即可判断.
(2)①求出正方形的边长,分两种情形分别求解即可解决问题.
②点M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D.求出OM的最大值,最小值即可判断.
【详解】
解:(1)①如图1中,
由题意:矩形PEQF中,EQ=PF=3- ,
∴OE=EQ,
∵EP∥OA,
∴AP=PQ,
∴PE=QF=OA=3,
∴点P、Q的“涵矩形”的周长=(3+)×2=1.
②如图2中,
∵点P、Q的“涵矩形”的周长为6,
∴邻边之和为3,
∵矩形的长是宽的两倍,
∴点P、Q的“涵矩形”的长为2,宽为1,
∵P(1,4),F(1,2),
∴PF=2,满足条件,
∴F(1,2)是矩形的顶点.
(2)①如图3中,
∵点P、Q的“涵矩形”是正方形,
∴∠ABO=45°,
∴点A的坐标为(0,6),
∴点B的坐标为(6,0),
∴直线AB的函数表达式为y=-x+6,
∵点P的横坐标为3,
∴点P的坐标为(3,3),
∵正方形PMQN的周长为8,
∴点Q的横坐标为3-2=1或3+2=5,
∴点Q的坐标为(1,5)或(5,1).
②如图4中,
∵正方形PMQN的对角线为,
∴PM=MQ=1,
易知M在直线y=-x+5上运动,设直线y=-x+5交x轴于F,交y轴于E,作OD⊥EF于D,
∵OE=OF=5,
∴EF= ,
∵OD⊥EF,
∴ED=DF,
∴OD=EF= ,
∴OM的最大值为5,最小值为,
∴.
本题属于四边形综合题,考查了矩形的判定和性质,正方形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.
18、x2=2,x2=﹣2
【解析】
把方程化成一般形式,用十字相乘法因式分解求出方程的根.
【详解】
解:x2﹣3x﹣2=0
(x﹣2)(x+2)=0
x﹣2=0或x+2=0
∴x2=2,x2=﹣2.
本题考查了一元二次方程的解法,根据题目特点,可以灵活选择合适的方法进行解答,使计算变得简单.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、45°.
【解析】
首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.
【详解】
解:过点B作BD∥l,
∵直线l∥m,
∴BD∥l∥m,
∴∠4=∠1,∠2=∠3,
∴∠1+∠2=∠3+∠4=∠ABC,
∵∠ABC=45°,
∴∠1+∠2=45°.
故答案为:45°.
此题考查了平行线的性质.解题时注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.
20、<<
【解析】
分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.
【详解】
解:当x=1时,=-2×1=-2;
当x=-1时,=-2×(-1)=2;
当x=-2时,=-2×(-2)=4;
∵-2<2<4
∴<<
故答案为:<<.
本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.
21、
【解析】
试题解析:设BE与AC交于点P,连接BD,
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
即P在AC与BE的交点上时,PD+PE最小,为BE的长度;
∵正方形ABCD的边长为1,
∴AB=1.
又∵△ABE是等边三角形,
∴BE=AB=1.
故所求最小值为1.
考点:轴对称﹣最短路线问题;等边三角形的性质;正方形的性质.
22、x>1
【解析】
试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.
试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;
由于两直线的交点横坐标为:x=1,
观察图象可知,当x>1时,x+b>ax+3;
考点:一次函数与一元一次不等式.
23、1
【解析】
把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.
【详解】
∵点A(1,n)在一次函数y=3x﹣2的图象上,
∴n=3×1﹣2=1.
故答案为:1.
本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、解:(1)1;1.
(2)s2甲=;
s2乙=.
(3)推荐甲参加比赛更合适.
【解析】
解:(1)1;1.
(2)s2甲=
==;
s2乙=
==.
(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.
25、(1)(1,4);(2)(﹣,1);(1)①OP= ;② ;(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).
【解析】
(1)根据旋转的得到B′的坐标;
(2)根据在Rt△OCA′,利用勾股定理即可求解;
(1)①根据已知条件得到△CPO≌△A′PB′,设OP=x,则CP=A′P=4﹣x,在Rt△CPO中,利用OP2=OC2+CP2,即x2=(4﹣x)2+12即可求出x的值,即可求解;②根据S△OPB′=PB′•OC即可求解;
(4)当点B′落在x轴上时,由OB′∥PQ,OP∥B′Q,此时四边形OPQB′为平行四边形,再根据平行四边形的性质即可求解.
【详解】
解:(1)∵A(﹣4,0),B(﹣4,1),
∴OA=4,AB=1.
由旋转的性质,可知:OA′=OA=4,A′B′=AB=1,
∴当α=90°时,点B′的坐标为(1,4).
故答案为:(1,4).
(2)在Rt△OCA′中,OA′=4,OC=1,
∴A′C==,
∴当点A′落在l上时,点P的坐标为(﹣,1).
故答案为:(﹣,1).
(1)①当四边形OA′B′C′的顶点B′落在BC的延长线上时,
在△CPO和△A′PB′中,,
∴△CPO≌△A′PB′(AAS),
∴OP=B′P,CP=A′P.
设OP=x,则CP=A′P=4﹣x.
在Rt△CPO中,OP=x,CP=4﹣x,OC=1,
∴OP2=OC2+CP2,即x2=(4﹣x)2+12,
解得:x=,
∴OP=.
②∵B′P=OP=,
∴S△OPB′=PB′•OC=××1=.
故答案为:.
(4)当点B′落在x轴上时,∵OB′∥PQ,OP∥B′Q,
∴此时四边形OPQB′为平行四边形.
过点A′作A′E⊥x轴于点E,如图4所示.
∵OA′=4,A′B′=1,
∴OB′==5,A′E==,OE==,
∴点B′的坐标为(5,0),点A′的坐标为(,).
设直线OA′的解析式为y=kx(k≠0),
将A′(,)代入y=kx,得:
=k,解得:k=,
∴直线OA′的解析式为y=x.
当y=1时,有x=1,
解得:x=4,
∴点P的坐标为(4,1).
∴在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).
此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、全等三角形的判定与性质.
26、 (1) yB=1x-1(1≤x≤6).(2)如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.
【解析】
试题分析:(1)设yB关于x的函数解析式为yB=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;
(2)设yA关于x的解析式为yA=k1x.将(3,180)代入可求得yA关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得yA,yB的值,最后求得yA与yB的差即可.
试题解析:(1)设yB关于x的函数解析式为yB=kx+b(k≠0).
将点(1,0),(3,180)代入,得,
解得:k=1,b=-1.
∴yB关于x的函数解析式为yB=1x-1(1≤x≤6).
(2)设yA关于x的函数解析式为yA=k1x.
根据题意,得3k1=180.解得k1=60.
∴yA=60x.
当x=5时,yA=60×5=300;
当x=6时,yB=1×6-1=450.
450-300=150(千克).
答:如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.
题号
一
二
三
四
五
总分
得分
销售量/件
7
8
10
11
15
人数
1
3
3
4
1
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
7
10
10
9
8
相关试卷
这是一份2025届浙江省慈溪市九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省宁波市慈溪市部分学校2023-2024学年数学九上期末复习检测试题含答案,共7页。试卷主要包含了下列对于二次根式的计算正确的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份2023-2024学年浙江省宁波市慈溪市部分学校数学九上期末考试模拟试题含答案,共7页。试卷主要包含了下列图形中为中心对称图形的是,如果,那么等内容,欢迎下载使用。