浙江省杭州市四校2024年数学九年级第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列变形正确的是( )
A.B.C.D.
2、(4分)如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为( )
A.5B.10C.12D.13
3、(4分)已知△ABC的三边长分别是a,b,c,且关于x的一元二次方程有两个相等的实数根,则可推断△ABC一定是( ).
A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形
4、(4分)下列计算不正确的是( )
A.B.C.D.
5、(4分)坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过( )
A.第一、二象限B.第一、四象限
C.第二、三象限D.第二、四象限
6、(4分)在分式(a,b为正数)中,字母a,b值分别扩大为原来的3倍,则分式的值( )
A.不变B.缩小为原来的
C.扩大为原来的3倍D.不确定
7、(4分)用反证法证明:“若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个是偶数”,下列假设中正确的是( )
A.假设a,b,c都是偶数 B.假设a,b,c都不是偶数
C.假设a,b,c至多有一个是偶数 D.假设a,b,c至多有两个是偶数
8、(4分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )
A.平均数B.中位数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在R△ABC中,∠ABC=90°,AB=2,BC=1,BD是AC边上的中线,则BD= ________。
10、(4分)直线与轴的交点坐标___________
11、(4分)若正多边形的一个内角等于,则这个多边形的边数是__________.
12、(4分)已知一组数据 a,b,c,d的方差是4,那么数据,,, 的方差是________.
13、(4分)已知,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停止旋转,在旋转过程中OG交AB于点M,OE交AD于点N.
(1)开始旋转前,即在图1中,连接NC.
①求证:NC=NA(M);
②若图1中NA(M)=4,DN=2,请求出线段CD的长度.
(2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.
(3)试探究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.
15、(8分)如图,在平行四边形ABCD中,DB=DA,∠ADB的平分线交AB于点F,交CB的延长线于点E,连接AE.
(1)求证:四边形AEBD是菱形;
(2)若DC=,EF:BF=3,求菱形AEBD的面积.
16、(8分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.
(3)试比较第6天和第13天的销售金额哪天多?
17、(10分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
18、(10分)在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)观察以下等式:
第1个等式:
第2个等式:=1
第3个等式:=1
第4个等式:=1
…
按照以下规律,写出你猜出的第n个等式:______(用含n的等式表示).
20、(4分)已知一次函数和函数,当时,x的取值范围是______________.
21、(4分)小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______
22、(4分)不等式的正整数解的和______;
23、(4分)小刚和小强从A.B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,则小强的速度为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)小王开车从甲地到乙地,去时走A线路,全程约100千米,返回时走B路线,全程约60千米.小王开车去时的平均速度比返回时的平均速度快20千米/小时,所用时间却比返回时多15分钟.若小王返回时的平均车速不低于70千米/小时,求小王开车返回时的平均速度.
25、(10分)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60.
(1)求证:ABAC;
(2)若DC=2,求梯形ABCD的面积.
26、(12分)如图,在平面直角坐标系中,点D是正方形OABC的边AB上的动点,OC=1.以AD为一边在AB的右侧作正方形ADEF,连结BF交DE于P点.
(1)请直接写出点A、B的坐标;
(2)在点D的运动过程中,OD与BF是否存在特殊的位置关系?若存在,试写出OD与BF的位置关系,并证明;若不存在,请说明理由.
(3)当P点为线段DE的三等分点时,试求出AF的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
依据分式的基本性质进行判断,即可得到结论.
【详解】
解:A. ,故本选项错误;
B. ,故本选项错误;
C. ,故本选项正确;
D. ,故本选项错误;
故选:C.
本题考查分式的基本性质,分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
2、D
【解析】
ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可
【详解】
解:∵ED垂直平分AB,
∴BE=AE,
∵AC=12,EC=5,且△ACE的周长为30,
∴12+5+AE=30,
∴AE=13,
∴BE=AE=13,
故选:D.
本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.
3、C
【解析】
根据判别式的意义得到,然后根据勾股定理的逆定理判断三角形为直角三角形.
【详解】
根据题意得:,
所以,
所以为直角三角形,.
故选:.
本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.也考查了勾股定理的逆定理.
4、B
【解析】
根据二次根式的加减法对A、C进行判断;根据二次根式的除法法则对D进行判断;根据二次根式的乘法法则对B进行判断.
【详解】
解:A、原式==所以A选项正确;
B、原式=2,所以B选项正确;
C、原式=+,所以C选项错误;
D、原式=2,所以D选项正确.
故选C.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
5、A
【解析】
根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.
【详解】
∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,
∴该函数图象是直线y=4,
∴该函数图象经过第一、二象限.
故选:A.
本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.
6、B
【解析】
把a和b的值扩大大为原来的3倍,代入后根据分式的基本性质即可求出答案.
【详解】
解:把a和b的值扩大大为原来的3倍,得
= ,
∴分式的值缩小为原来的.
故选:B.
本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
7、B
【解析】
用反证法法证明数学命题时,应先假设命题的反面成立,求出要证的命题的否定,即为所求.
【详解】
解:用反证法法证明数学命题时,应先假设要证的命题的反面成立,即要证的命题的否定成立,
而命题:“若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个是偶数”的否定为:“假设a,b,c都不是偶数”,
故选:B.
8、B
【解析】
由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.
【详解】
11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选B.
本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.5
【解析】
利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.
【详解】
解:在Rt△ABC中,
AC=
∵ BD是AC边上的中线,
∴AC=2BD
∴BD=3÷2=1.5
故答案为:1.5
本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
10、(0,-3)
【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.
【详解】
解:由题意得:当x=0时,y=2×0-3=-3,
即直线与y轴交点坐标为(0,-3),
故答案为(0,-3).
本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.
11、十
【解析】
根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.
【详解】
解:设正多边形是n边形,由题意得
(n−2)×180°=144°×n.
解得n=10,
故答案为:十.
本题考查了多边形的内角,利用了正多边形的内角相等,多边形的内角和公式.
12、
【解析】
方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变.从而可得答案.
【详解】
解:设数据a、b、c、d的平均数为,
数据都加上了2,则平均数为,
∵
故答案为1.
本题考查了方差,说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.掌握以上知识是解题的关键.
13、1
【解析】
直接利用二次根式非负性得出a,b的值,进而得出答案.
【详解】
∵,
∴a=−1,b=1,
∴−1+1=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出a,b的值是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)①证明见解析;②;(1)ND1=NA1+CD1,证明见解析;(3)DN1+BM1=AM1+AN1,证明见解析.
【解析】
试题分析:(1)①由矩形的对角线互相平分得OA=OC,根据正方形的内角都是直角,得∠EOG=90°,用线段垂直平分线上的点到两端点的距离相等即可得;②用勾股定理计算即可;(1)连接BN,方法同(1)得到NB=ND,再用勾股定理即可;(3)延长GO交CD于H,连接MN,HN,先判断出BM=DH,OM=OH,再和前两个一样,得出MN=NH,再用勾股定理即可.
解:(1)①∵四边形ABCD是矩形,∴OA=OC,
∵四边形EFGO为正方形,∴∠EOG=90°,
∴NC=NA;
②由①得,NA=NC=4,DN=1,
根据勾股定理得CD==;
(1)结论:ND1=NA1+CD1,连接NB,
∵四边形ABCD是矩形,∴OB=OD,AB=CD,
∵四边形EFGO为正方形,∴∠EOG=90°,
∴ND=NB.
根据勾股定理得NB1=NA1+AB1=NA1+CD1=ND1;
(3)结论AN1+AM1=DN1+BM1,
延长GO交CD于H,连接MN,HN,
∵四边形ABCD是矩形,
∴OB=OD,∠OBM=∠ODH,
又∵∠BOM=∠DOH,
∴△BOM≌△DOH,
∴BM=DH,OM=OH,
∵四边形EFGO是正方形,
∴∠EOG=90°,
∴MN=NH,
在Rt△NDH中,NH1=DN1+DH1=DN1+BM1,
在Rt△AMN中,MN1=AM1+AN1,
∴DN1+BM1=AM1+AN1.
15、(1)见解析;(2)1.
【解析】
(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据DB=DA可得结论;
(2)先求出BF的长,再求出EF的长即可解决问题.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥CE,
∴∠DAF=∠EBF,
∵∠AFD=∠EFB,AF=FB,
∴△AFD≌△BFE,
∴AD=EB,∵AD∥EB,
∴四边形AEBD是平行四边形,
∵BD=AD,
∴四边形AEBD是菱形.
(2)∵四边形ABCD是平行四边形,
∴CD=AB=,
∵四边形AEBD是菱形,
∴AB⊥DE,AF=FB=,
∵EF:BF=3
∴EF=
∴DE=2EF=
∴S菱形AEBD=•AB•DE=××3=1.
本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
16、(1)日销售量最大为120千克;(2) ;(3)第6天比第13天销售金额大.
【解析】
(1)观察图(1),可直接得出第12天时,日销售量最大120千克;
(2)观察图(1)可得,日销售量y与上市时间x的函数关系式存在两种形式,根据直线所经过点的坐标,利用待定系数法直接求得函数解析式;
(3)观察图(1),根据(2)求出的函数解析式,分别求出第6天和第13天的日销售量,再根据图(2),求出第6天和第13天的销售单价,求出第6天和第13天的销售金额,最后比较即可.
【详解】
(1)由图(1)可知,x=12时,日销售量最大,为120千克;
(2)0≤x<12时,设y=k1x,
∵函数图象经过点(12,120),
∴12k1=120,
解得k1=10,
∴y=10x,
12≤x≤20时,设y=k2x+b1,
∵函数图象经过点(12,120),(20,0),
∴,
解得,
∴y=﹣15x+300,
综上所述,y与x的函数关系式为;
(3)5≤x≤15时,设z=k3x+b2,
∵函数图象经过点(5,32),(15,12),
∴,
解得,
∴z=﹣2x+42,
x=6时,y=60,z=﹣2×6+42=30,
∴销售金额=60×30=1800元,
x=13时,y=﹣15×13+300=105,
z=﹣2×13+42=16,
∴销售金额=105×16=1680元,
∵1800>1680,
∴第6天比第13天销售金额大.
本题考查了一次函数的应用,涉及了待定系数法,二元一次方程组的解法,弄清题意,准确识图是解题的关键.应注意自变量的取值范围.
17、7200元
【解析】
仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.
【详解】
连接BD,
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四边形ABCD=S△BAD+S△DBC=⋅AD⋅AB+DB⋅BC=×4×3+×12×5=36.
所以需费用36×200=7200(元).
此题考查勾股定理的应用,解题关键在于作辅助线和利用勾股定理进行计算.
18、(1)6﹣2;(2)详见解析.
【解析】
(1)根据平行四边形性质可证:△BDE是等腰直角三角形,运用勾股定理可求DE和AD,AE即可求得;
(2)过点E作ET⊥AB交BA的延长线于T,构造直角三角形,由平行四边形性质及直角三角形性质可证:△BEQ≌△BET(AAS),△BFH≌△TEF(AAS),进而可证得结论.
【详解】
解:(1)如图1,过点D作DR⊥BC于R,
∵ABCD是平行四边形
∴AB∥CD,AD∥BC,AD=BC
∵∠C=60°,∠BDC=75°,
∴∠CBD=180°﹣(∠C+∠BDC)=45°
∴∠ADB=∠CBD=45°
∵BE⊥BD
∴∠DBE=90°
∴∠E=∠BDE=45°
∴DE=BD=12
∵DR⊥BC
∴∠BRD=∠CRD=90°
∴∠BDR=∠CBD=45°,
∴DR=BR
由勾股定理可得即
∴DR=BR=6
∵∠C=60°
∴∠CDR=90°﹣60°=30°
∴CR=2,CD=4
∴AD=BC=DR+CR=6+2,
∴AE=DE﹣AD=12﹣(6+2)=6﹣2;
(2)如图2,过点E作ET⊥AB交BA的延长线于T,则∠T=90°
∵ABCD是平行四边形
∴AB∥CD,
∴∠ABD=∠BDC
∵∠QEB=∠BDC
∴∠QEB=∠ABD
∵BG⊥CD,BE⊥BD,FH⊥FE
∴∠BGC=∠ABG=∠DBE=∠EFH=∠Q=90°
∴∠EBT+∠BET=∠EBT+∠ABD=∠EFT+∠BFH=∠EFT+∠FET=90°,
∴∠BET=∠ABD=∠QEB,∠BFH=∠FET
∵BE=BE,EF=FH
∴△BEQ≌△BET(AAS),△BFH≌△TEF(AAS)
∴BQ=BT,BH=FT
∵BF+FT=BT
∴BF+BH=BQ.
本题考查了平行四边形的性质、勾股定理以及全等三角形的性质与判定,解题的关键是灵活运用平行四边形及直角三角形的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、++×=1
【解析】
观察前四个等式可得出第n个等式的前两项为及,对比前四个等式即可写出第n个等式,此题得解.
【详解】
解:观察前四个等式,可得出:第n个等式的前两项为及,
∴第n个等式为
故答案为:++×=1
本题考查规律型中的数字的变化类,观察给定等式,找出第n的等式是解题的关键.
20、
作出函数图象,联立方程组,解出方程组,结合函数图象即可解决问题.
【详解】
根据题意画出函数图象得,
联立方程组和
解得,,,
结合图象可得,当时,
21、金额与数量
【解析】
根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故答案为:金额与数量.
本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.
22、3.
【解析】
先解出一元一次不等式,然后选取正整数解,再求和即可.
【详解】
解:解得;x<3,;则正整数解有2和1;
所以正整数解的和为3;故答案为3.
本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.
23、4 km/h.
【解析】
此题为相遇问题,可根据相遇时甲乙所用时间相等,且甲乙所行路程之和为A,B两地距离,从而列出方程求出解.
【详解】
设小刚的速度为xkm/h,
则相遇时小刚走了2xkm,小强走了(2x−24)km,
由题意得,2x−24=0.5x,
解得:x=16,
则小强的速度为:(2×16−24)÷2=4(km/h),
故答案为:4 km/h.
此题考查一元一次方程的应用,解题关键在于根据题意列出方程.
二、解答题(本大题共3个小题,共30分)
24、80千米/小时
【解析】
设小王开车返回时的平均速度为x千米/小时,根据题意列出分式方程,然后求解得到x的值,再进行验根,得到符合题意的值即可.
【详解】
解:设小王开车返回时的平均速度为x千米/小时,
,
,
,
经检验:都是原方程的根,但是,不符合题意,应舍去.
答: 小王开车返回时的平均速度是80千米/小时.
本题主要考查分式方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系的量列出方程,然后求解,验根得到符合题意的解即可.
25、(1)见解析;(2)
【解析】
(1)利用等腰梯形的性质可求得,再利用平行的性质及等边对等角可求出,然后根据三角形内角和即可求出,从而得到结论;
(2)过点作于点,利用含30°角的直角三角形的性质可求出BE、BC,根据勾股定理求出AE,然后利用面积公式进行计算即可.
【详解】
证明:(1)∵,,,
∴,,
又∵,
∴,
∴,
∴,
∴;
(2)过点作于,
∵,
∴,
又∵,
∴,
∴在中,,
∵,,
∴,
∴.
本题考查了等腰梯形的性质,含30°角的直角三角形的性质,等边对等角及勾股定理,需要熟记基础的性质定理,熟练应用.
26、(1)A(1,0),B(1,1);(2)OD⊥BF,理由见解析;(3)当P点为线段DE的三等分点时,AF的长度为2或2.
【解析】
(1)利用正方形的性质得出OA=AB=1,即可得出结论;
(2)利用SAS判断出△AOD≌△BAF,进而得出∠AOD=∠BAF,即可得出结论;
(3)先表示出BD,DP,再判断出△BDP∽△BAF,得出,代入解方程即可得出结论。
【详解】
(1)∵四边形OABC是正方形,
∴BC⊥OC,AB⊥OA,OB=AB=BC=OC,
∵OC=1,
∴BC=AB=1,
∴A(1,0),B(1,1);
(2)OD⊥BF,理由:如图,延长OD交BF于G,
∵四边形ADEF是正方形,
∴AD=AF,∠BAF=∠OAD,
在△AOD和△BAF中, ,
∴△AOD≌△BAF(SAS),
∴∠AOD=∠BAF,
∴∠BAF+∠AFB=90°,
∴∠AOD+AFB=90°,
∴∠OGF=90°,
∴OD⊥BF;
(3)设正方形ADEF的边长为x,
∴AF=AD=DE=x,
∴BD=AB﹣AD=1﹣x,
∵点P是DE的三等分点,
∴DP=AF=x或DP=AF=x
∵DE∥AF,
∴△BDP∽△BAF,
∴,
∴或 ,
∴x=2或x=2,
当P点为线段DE的三等分点时,AF的长度为2或2.
本题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,垂直的判定,相似三角形的判定和性质,用方程的思想解决问题是解本题的
题号
一
二
三
四
五
总分
得分
浙江省杭州市萧山区五校联考2025届九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份浙江省杭州市萧山区五校联考2025届九年级数学第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省杭州市下城区观城中学2025届数学九年级第一学期开学质量检测试题【含答案】: 这是一份浙江省杭州市下城区观城中学2025届数学九年级第一学期开学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省杭州市江干区2025届数学九年级第一学期开学检测试题【含答案】: 这是一份浙江省杭州市江干区2025届数学九年级第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。