浙江省杭州市景成实验学校2024年九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于( )
A.2B.3.5C.7D.14
2、(4分)等式•=成立的条件是( )
A.B.C.D.
3、(4分)在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )
A.B.C.D.
4、(4分)将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是( )
A.30°B.45°C.60°D.70°
5、(4分)古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )
A.B.C.D.
6、(4分)正比例函数y=kx(k≠0)的图象经过点(2,﹣1),则这个函数的图象必经过点( )
A.(﹣1,2)B.(1,2)C.(2,1)D.(﹣2,1)
7、(4分)下面四个应用图标中,属于中心对称图形的是( )
A.B.C.D.
8、(4分)已知,一次函数y=kx+b的图象如图,下列结论正确的是( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.
10、(4分)计算-=_______.
11、(4分)如图 是中国在奥运会中获奖牌扇形统计图,由图可知,金牌数占奖牌总数的百分 率是_____,图中表示金牌百分率的扇形的圆心角度数约是____________.(精确到 1°)
12、(4分)函数y=与y=k2x(k1,k2均是不为0的常数)的图象相交于A、B两点,若点A的坐标是(1,2),则点B的坐标是______.
13、(4分)函数y=kx与y=6–x的图像如图所示,则k=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为了了解学生在校吃午餐所需时间的情况,抽查了20名同学在校吃午餐所花的时间,获得如下数据(单位:min):
10,12,15,10,16,18,19,18,20,38,
22,25,20,18,18,20,15,16,21,16.
(1)若将这些数据分为6组,请列出频数表,画出频数直方图;
(2)根据频数直方图,你认为校方安排学生吃午餐时间多长为宜?请说明理由.
15、(8分)如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;
(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.
16、(8分).已知:如图4,在中,∠BAC=90°,DE、DF是的中位线,连结EF、AD. 求证:EF=AD.
17、(10分)(某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资底薪+计件工资)
(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
18、(10分)已知a,b是直角三角形的两边,且满足,求此三角形第三边长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,若DE=2.5 cm,AB=4 cm,则BC的长为_______cm.
20、(4分)试写出经过点,的一个一次函数表达式:________.
21、(4分)如图,在平面直角坐标系中,绕点旋转得到,则点的坐标为_______.
22、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是______.
23、(4分)已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD是平行四边形,E是BC边的中点,DF//AE,DF与BC的延长线交于点F,AE,DC的延长线交于点G,连接FG,若AD=3,AG=2,FG=,求直线AG与DF之间的距离.
25、(10分)(2005•荆门)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.
(1)求中巴车和大客车各有多少个座位?
(2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?
26、(12分)如图,在平面直角坐标系中,己知三个顶点的坐标分別是,,.以点为位似中心,将缩小为原来的,得到,图形的对应点为与,与,与.
(1)写出所有满足条件的点的坐标_________________;
(2)请在轴左侧画出满足条件的.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由菱形的周长可求得AB的长,再利用三角形中位线定理可求得答案0
【详解】
∵四边形ABCD为菱形,∴AB28=7,且O为BD的中点.
∵E为AD的中点,∴OE为△ABD的中位线,∴OEAB=3.1.
故选B.
本题考查了菱形的性质,由条件确定出OE为△ABD的中位线是解题的关键.
2、C
【解析】
根据二次根式的乘法法则成立的条件:a≥0且b≥0,即可确定.
解:根据题意得:,
解得:x≥1.x≥– 1,
故答案是:x≥1.
“点睛”本题考查了二次根式的乘法法则,理解二次根式有意义的条件是关键.
3、C
【解析】
分析:根据第二象限内点的坐标特征,可得答案.
详解:由题意,得
x=-4,y=3,
即M点的坐标是(-4,3),
故选C.
点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.
4、C
【解析】
先由两直线平行内错角相等,得到∠A=30°,再由直角三角形两锐角互余即可得到∠α的度数.
【详解】
解:如图所示,
∵l1∥l2,
∴∠A=∠ABC=30°,
又∵∠CBD=90°,
∴∠α=90°﹣30°=60°,
故选C.
此题考查了平行线的性质和直角三角形的性质.注意:两直线平行,内错角相等.
5、D
【解析】
三角形数=1+2+3+……+n,很容易就可以知道一个数是不是三角形数.结合公式,代入验证三角形数就可以得到答案.
【详解】
A.中3和10是三角形数,但是不相邻;
B.中16、9均是正方形数,不是三角形数;
C.中18不是三角形数;
D.中28=1+2+3+4+5+6+7,36=1+2+3+4+5+6+7+8,所以D正确;
故选D.
此题考查此题考查规律型:数字的变化类,勾股数,解题关键在于找到变换规律.
6、D
【解析】
先把点(2,﹣1),代入正比例函数y=kx(k≠0),求出k的值,故可得出此函数的解析式,再把各点代入此函数的解析式进行检验即可.
【详解】
解:∵正比例函数y=kx(k≠0)的图象经过点(2,﹣1),
∴﹣1=2k,解得k=﹣,
∴正比例函数的解析式为y=﹣x.
A、∵当x=﹣1时,y=≠2,∴此点不在正比例函数的图象上,故本选项错误;
B、∵当x=1时,y=﹣≠2,∴此点不在正比例函数的图象上,故本选项错误;
C、当x=2时,y=﹣1≠1,∴此点不在正比例函数的图象上,故本选项错误;
D、当x=﹣2时,y=1,∴此点在正比例函数的图象上,故本选项正确.
故选:D.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了待定系数法求正比例函数的解析式.
7、A
【解析】
根据中心对称图形的概念进行判断即可.
【详解】
解:A、图形是中心对称图形;
B、图形不是中心对称图形;
C、图形不是中心对称图形;
D、图形不是中心对称图形,
故选:A.
本题考查的是中心对称图形的概念.掌握定义是解题的关键,中心对称图形是要寻找对称中心,旋转180度后能与自身重合.
8、B
【解析】
根据图象在坐标平面内的位置,确定k,b的取值范围,从而求解.
【详解】
∵一次函数y=kx+b的图象,y随x的增大而增大,
∴k>1,
∵直线与y轴负半轴相交,
∴b<1.
故选:B.
本题主要考查一次函数的解析式的系数的几何意义,掌握一次函数的解析式的系数与直线在坐标系中的位置关系,是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20%
【解析】
设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1-x),第二次降价后的单价是原来的(1-x)2,根据题意列方程求解即可.
【详解】
设平均每次降价的百分率为x,根据题意列方程得
250×(1-x)2=160,
解得x1=0.2,2,x2=1.8(不符合题意,舍去),
即该商品平均每次降价的百分率为20%,
故答案为:20%.
本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.
10、2
【解析】
利用二次根式的减法法则计算即可.
【详解】
解:原式
故答案为:
本题考查二次根式的减法运算,熟练掌握二次根式的减法运算法则是解题关键.
11、51%; 184°.
【解析】
先利用1-28-21得出金牌数占奖牌总数的百分比,然后用360°去乘这个百分比即可.
【详解】
解:1-28%-21%=51%
360°×51%=183.6°184°
故答案为:51%;184°
考查扇形统计图的制作方法,明确扇形统计图的特点,是解决问题的关键.
12、 (-1,-2)
【解析】
根据函数图象的中心对称性,由一个交点坐标,得出另一个交点坐标,“关于原点对称的两个的纵横坐标都是互为相反数”这一结论得出答案.
【详解】
∵正比例函数y=k2x与反比例函数数y=的图象都是以原点为对称中心的中心对称图形,
∴他们的交点A与点B也关于原点对称,
∵A(1,2)
∴B(-1,-2)
故答案为:(-1,-2)
考查正比例函数、反比例函数的图象和性质,得出点A和点B关于原点对称是解决问题的关键,掌握“关于原点对称的两个的纵横坐标都是互为相反数”是前提.
13、1
【解析】
首先根据一次函数y=6﹣x与y=kx图像的交点横坐标为1,代入一次函数y=6﹣x求得交点坐标为(1,4),然后代入y=kx求得k值即可.
【详解】
∵一次函数y=6﹣x与y=kx图像的交点横坐标为1,∴y=6﹣1=4,∴交点坐标为(1,4),代入y=kx,1k=4,解得:k=1.
故答案为1.
本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)校方安排学生吃午餐时间25 min左右为宜,因为约有90%的学生在25 min内可以就餐完毕
【解析】
(1)找出20名学生在校午餐所需的时间的最大值与最小值,根据(最大值-最小值)÷6可得到组距.然后根据组距列出频数表,画出频数直方图.
(2)由(1)分析即可得解.
【详解】
(1)
(2)校方安排学生吃午餐时间25 min左右为宜,因为约有90%的学生在25 min内可以就餐完毕.
本题考查的是频数分布表的制作以及组数的计算,要能根据频数直方图得到解题的必要的信息.
15、(1)旋转中心坐标是,旋转角是;(2)见解析;(3)见解析
【解析】
(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;
(2)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;
(3)利用面积,根据正方形CC1C2C3的面积等于正方形AA1A2B的面积加上△ABC的面积的4倍,列式计算即可得证.
【详解】
(1)旋转中心坐标是,旋转角是
(2)画出图形如图所示.
(3)由旋转的过程可知,四边形和四边形是正方形.
∵,
∴,
,
∴.
即中,,
本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,勾股定理的证明,熟练掌握网格结构,找出对应点的位置是解题的关键.
16、证明:因为DE,DF是△ABC的中位线
所以DE∥AB,DF∥AC …………. 2分
所以四边形AEDF是平行四边形 ………….… 5分
又因为∠BAC=90°
所以平行四边形AEDF是矩形……………………分
所以EF=AD …………………………….….………10分
【解析】略
17、(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)违背了广告承诺.
【解析】
试题分析:(1)根据题目中2个等量关系列出,求出结果;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺.
试题解析:
解:(1)设熟练工加工1件型服装需要x小时,加工1件型服装需要y小时.
由题意得:,
解得:
答:熟练工加工1件型服装需要2小时,加工1件型服装需要1小时.……4分
当一名熟练工一个月加工型服装件时,则还可以加工型服装件.
又∵≥,解得:≥
,随着的增大则减小
∴当时,有最大值.
∴该服装公司执行规定后违背了广告承诺. .
考点:方程组,函数应用
18、3或
【解析】
分析:先把右边的项移到左边,,根据完全平方公式变形为,根据算术平方根的非负性和偶次方的非负性列方程求出a、b的值,然后分两种情况利用勾股定理求第三边的长.
详解:由=8b-b2-16,
得-8b+b2+16=0,
得+(b-4)2=0.
又∵≥0,且(b-4)2≥0,
∴a-5=0,b-4=0,
∴a=5,b=4,
当a、b为直角边时,
第三边=;
当a为斜边时,
第三边=;
点睛:本题考查了算术平方根的非负性,偶次方的非负性,完全平方公式,勾股定理及分类讨论的数学思想. 分两种情况求解是正确解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、9
【解析】
根据题意先证△ABD≌△GBD,得出AB=BG,D为AG中点,再由E为AC中点,根据中位线的性质即可求解.
【详解】
∵BF平分∠ABC,∴∠ABD=∠GBD,
∵AG⊥BF,∴∠BDG=∠BDA,
又BD=BD,∴△ABD≌△GBD
∴BG=AB=4cm,AD=GD,
故D为AG中点,又E为AC中点
∴GC=2DE=5cm,
∴BC=BG+GC=9cm.
此题主要考查线段的长度求解,解题的关键是熟知全等三角形的判定与中位线的性质.
20、y=x+1
【解析】
根据一次函数解析式,可设y=kx+1,把点代入可求出k的值;
【详解】
因为函数的图象过点(1,2),
所以可设这个一次函数的解析式y=kx+1,把(1,2)代入得:2=k+1,
解得k=1,
故解析式为y=x+1
此题考查一次函数解析式,解题的关键是设出解析式;
21、
【解析】
连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交于点D,点D即为所求.
【详解】
解:连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交点即为点D,如图,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,掌握对应点连线的垂直平分线的交点就是旋转中心是解题的关键.
22、
【解析】
根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.
【详解】
解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,
∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,
即D为CE中点,
∵EF⊥BC,∴∠EFC=90°,
∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,
∵EF=3,∴CE=2,∴AB=,
故答案为.
本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.
23、13或;
【解析】
第三条边的长度为
二、解答题(本大题共3个小题,共30分)
24、直线与之间的距离为
【解析】
根据四边形是平行四边形得到,再证明四边形AEFD是平行四边形,接着证明△ECG≌△FCD,可得AE=DF=EG=1,利用勾股定理的逆定理证明∠EGF=90°即可解决问题
【详解】
证明: 四边形是平行四边形,
.
(两直线平行,内错角相等),
又是边的中点,
,
,
.
.
,
又
四边形是平行四边形.
.
在中,
又∵
.
(勾股定理的逆定理),
.
又
线段的长是直线与之间的距离.
即直线与之间的距离为;
本题主要考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理的逆定理等知识,综合性较强解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25、(1)每辆中巴车有座位45个,每辆大客车有座位60个.(1)租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
【解析】
试题分析:(1)每辆车的座位数:设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,可座学生人数分别是:170、(170+30).车辆数可以表示为,因为租用大客车少一辆.所以,中巴车的辆数=大客车辆数+1,列方程.
(1)在保证学生都有座位的前提下,有三种租车方案:
①单独租用中巴车,需要租车辆,可以计算费用.
②单独租用大客车,需要租车(6﹣1)辆,也可以计算费用.
③合租,设租用中巴车y辆,则大客车(y+1)辆,座位数应不少于学生数,根据题意列出不等式.注意,车辆数必须是整数.三种情况,通过比较,就可以回答题目的问题了.
解:(1)设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,依题意有
解之得:x1=45,x1=﹣90(不合题意,舍去).
经检验x=45是分式方程的解,
故大客车有座位:x+15=45+15=60个.
答:每辆中巴车有座位45个,每辆大客车有座位60个.
(1)解法一:
①若单独租用中巴车,租车费用为×350=1100(元)
②若单独租用大客车,租车费用为(6﹣1)×400=1000(元)
③设租用中巴车y辆,大客车(y+1)辆,则有
45y+60(y+1)≥170
解得y≥1,当y=1时,y+1=3,运送人数为45×1+60×3=170人,符合要求
这时租车费用为350×1+400×3=1900(元)
故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
解法二:①、②同解法一
③设租用中巴车y辆,大客车(y+1)辆,则有
350y+400(y+1)<1000
解得:.
由y为整数,得到y=1或y=1.
当y=1时,运送人数为45×1+60×1=165<170,不合要求舍去;
当y=1时,运送人数为45×1+60×3=170,符合要求.
故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
考点:一元一次不等式的应用;解一元二次方程-因式分解法;分式方程的应用.
26、(1)(1,1)或(﹣1,﹣1);(2)见详解
【解析】
(1)把A点坐标分别乘以或﹣得到点A1的坐标;
(2)把A、B、C点的坐标分别﹣得到A1、B1、C1的坐标,然后描点即可.
【详解】
解:(1)点A1的坐标为(1,1)或(﹣1,﹣1);
故答案为(1,1)或(﹣1,﹣1);
(2)如图,△A1B1C1为所作.
本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.
题号
一
二
三
四
五
总分
得分
组别(min)
划记
频数
9.5~14.5
3
14.5~19.5
正正
10
19.5~24.5
正
5
24.5~29.5
1
29.5~34.5
0
34.5~39.5
1
浙江省杭州市西溪中学2024年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份浙江省杭州市西溪中学2024年数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省杭州市临安市2024-2025学年九上数学开学质量跟踪监视试题【含答案】: 这是一份浙江省杭州市临安市2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省杭州市景成实验中学2024年数学九上开学预测试题【含答案】: 这是一份浙江省杭州市景成实验中学2024年数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。