云南省施甸县2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列二次根式中,为最简二次根式的是( )
A.B.C.D.
2、(4分)下列曲线中能表示是的函数的是( )
A.B.
C.D.
3、(4分)矩形的边长是,一条对角线的长是,则矩形的面积是( )
A.B.C..D.
4、(4分)下列二次根式中能与2合并的是( )
A.B.C.D.
5、(4分)一次函数y=﹣2x+3的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)若两个相似多边形的面积之比为1∶3,则对应边的比为( )
A.1∶3B.3∶1 C.1: D.:1
7、(4分)将直线平移后,得到直线,则原直线( )
A.沿y轴向上平移了8个单位B.沿y轴向下平移了8个单位
C.沿x轴向左平移了8个单位D.沿x轴向右平移了8个单位
8、(4分)小明发现下列几组数据能作为三角形的边:①3,4,5; ②5,12,13;③12,15,20;④8,24,25;其中能作为直角三角形的三边长的有( )组
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)为了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体统计如下:
则关于这20名学生阅读小时的众数是_____.
10、(4分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=,那么6※3=_____.
11、(4分)若n边形的内角和是它的外角和的2倍,则n= .
12、(4分)把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式_____.
13、(4分)有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
15、(8分)已知二次函数
(1)若该函数与轴的一个交点为,求的值及该函数与轴的另一交点坐标;
(2)不论取何实数,该函数总经过一个定点,
①求出这个定点坐标;
②证明这个定点就是所有抛物线顶点中纵坐标最大的点。
16、(8分)如图,直线的解析式为,与轴交于点,直线经过点(0,5),与直线交于点(﹣1,),且与轴交于点.
(1)求点的坐标及直线的解析式;
(2)求△的面积.
17、(10分)解方程:(1)(2x+1)2=(x-1)2;(2)x2+4x-7=0
18、(10分) “五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.
20、(4分)在平面直角坐标系中,将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为_________.
21、(4分)若,则的值是________
22、(4分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,则不等式的解集为________.
23、(4分)若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)小林为探索函数的图象与性经历了如下过程
(1)列表:根据表中的取值,求出对应的值,将空白处填写完整
(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象.
(3)若函数的图象与的图象交于点,,且为正整数),则的值是_____.
25、(10分)如图,反比例函数的图象经过点
(1)求该反比例函数的解析式;
(2)当时,根据图象请直接写出自变量的取值范围.
26、(12分)如图,在平面直角坐标系中,一次函数(,、为常数)的图象与反比例函数的图象交于第二、四象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为-1.
(1)求一次函数的解析式;(2)连接、,求的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
2、D
【解析】
根据函数的定义,每一个自变量x都有唯一的y值和它对应即可解题.
【详解】
解:由函数的定义可知,x与y的对应关系应该是一对一的关系或多对一的关系,据此排除A,B,C,
故选D.
本题考查了函数的定义,属于简单题,熟悉函数定义的对应关系是解题关键.
3、C
【解析】
根据勾股定理求出矩形的另一条边的长度,即可求出矩形的面积.
【详解】
由题意及勾股定理得矩形另一条边为==4
所以矩形的面积=44=16.
故答案选C.
本题考查的知识点是勾股定理,解题的关键是熟练的掌握勾股定理.
4、B
【解析】
先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.
【详解】
A、=2,不能与2合并,故该选项错误;
B、能与2合并,故该选项正确;
C、=3不能与2合并,故该选项错误;
D、=3不能与2合并,错误;
故选B.
本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.
5、C
【解析】
试题解析:∵k=-2<0,
∴一次函数经过二四象限;
∵b=3>0,
∴一次函数又经过第一象限,
∴一次函数y=-x+3的图象不经过第三象限,
故选C.
6、C
【解析】
直接根据相似多边形的性质进行解答即可.
【详解】
∵两个相似多边形的面积之比为1:3,
∴这两个多边形对应边的比为=1:.
故选C.
本题考查的是相似多边形的性质,即相似多边形面积的比等于相似比的平方.
7、A
【解析】
利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
【详解】
∵将直线平移后,得到直线,
设平移了a个单位,
∴=,
解得:a=8,
所以沿y轴向上平移了8个单位,
故选A
本题考查一次函数图象与几何变换,解题的关键是掌握平移的规律.
8、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.
【详解】
①∵
∴此三角形是直角三角形,符合题意;
②∵
∴此三角形是直角三角形,符合题意;
③∵
∴此三角形不是直角三角形,不符合题意;
④∵
∴此三角形不是直角三角形,不符合题意;
故其中能作为直角三角形的三边长的有2组
故选:B
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
众数是一组数据中出现次数最多的数据,根据众数的定义就可以求出.
【详解】
在这一组数据中1出现了8次,出现次数最多,因此这组数据的众数为1.
故答案为1.
本题属于基础题,考查了确定一组数据的众数的能力.要明确定义.
10、1.
【解析】
试题解析:6※3=.
考点:算术平方根.
11、6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2), 外角和=360º
所以,由题意可得180(n-2)=2×360º
解得:n=6
12、y=2x2+1.
【解析】
先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式即可.
【详解】
抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=2x2+1.
故答案是:y=2x2+1.
本题考查了抛物线的平移,根据平移规律得到平移后抛物线的顶点坐标为(0,1)是解决问题的关键.
13、34
【解析】
试题解析:解:设这7个数的中位数是x,
根据题意可得:,
解方程可得:x=34.
考点:中位数、平均数
点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.
三、解答题(本大题共5个小题,共48分)
14、10
【解析】
试题分析:由题意可构建直角三角形求出AC的长,过C点作CE⊥AB于E,则四边形EBDC是矩形.BE=CD,AE可求,CE=BD,在Rt△AEC中,由两条直角边求出AC长.
试题解析:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形.∴EB=CD=4m,EC=8m.AE=AB-EB=10-4=6m.连接AC,在Rt△AEC中,.
考点:1.勾股定理的运用;2.矩形性质.
【详解】
请在此输入详解!
15、(1);(2)①(2,6);②点(2,6)
【解析】
(1)将代入,求得a的值,然后再确定与x轴的另一交点.
(2)①整理,使a的系数为0,从而确定x,进而确定y,即可确定定点.
②先确定顶点坐标,继而根据二次函数的性质进行说明即可.
【详解】
解:(1)代入得,
∴,
∴,
∴另一交点为.
(2)①整理得 ,
令代入,得:,
故定点为,
②∵,
∴顶点为,
又∵,
∴时纵坐标有最大值6,
∴顶点坐标为是所有顶点中纵坐标最大的点.
本题考查了二次函数图像的性质及整式的变形,其中根据需要对整式进行变形是解答本题的关键.
16、(1);(2) .
【解析】
(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;
(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.
【详解】
(1)∵直线: 经过点(﹣1,),
∴=1+2=3,
∴C(﹣1,3),
设直线的解析式为 ,
∵经过点(0,5),(﹣1,3),
∴,
解得:
∴直线的解析式为;
(2)当=0时,2+5=0,
解得,
则(,0),
当=0时,﹣+2=0
解得=2,
则(2,0),
∴.
此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.
17、 (1)x1=0,x2=-2;(2)x1=-2+,x2=-2-.
【解析】
分析:(1)用直接开平方法求解即可;(2)根据求根公式:计算即可.
详解:(1)∵(2x+1)2=(x-1)2,
∴2x+1=x-1或2x+1=-(x-1),
∴2x-x=-1-1或2x+1=-x+1,
∴2x-x=--1或2x+1=-x+1,
∴x=-2或x=0,
即x1=0,x2=-2;
(2)x2+4x-7=0
∵a=1,b=4,c=-7,
∴x= ,
∴x1=-2+,x2=-2-.
点睛:本题主要考查的知识点是一元二次方程的解法-直接开平方法和求根公式法.熟练掌握直接开平方法和求根公式法是解答本题的关键,本题属于一道基础题,难度适中.
18、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【解析】
试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80>30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、30°
【解析】
根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.
【详解】
∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,
∴∠BOD=45°,
又∵∠AOB=15°,
∴∠AOD=∠BOD-∠AOB=45°-15°=30°.
故答案为30°.
20、(-1,1)
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.
【详解】
解:将点向右平移1个单位,再向下平移2个单位得到点,
则点的坐标为(-1,1).
故答案为(-1,1).
本题考查了坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
21、.
【解析】
解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.
22、
【解析】
根据直线y=kx+b与y轴交于点B(1,1),以及函数的增减性,即可求出不等式kx+b>1的解集.
【详解】
解:∵直线y=kx+b与x轴交于点A(3,1),与y轴交于点B(1,1),
∴y随x的增大而减小,
∴不等式kx+b>1的解集是x<1.
故答案为x<1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标
23、1
【解析】
先根据平均数的定义求出x的值,然后根据中位数的定义求解.
【详解】
由题意可知,(1+a+7+8+3)÷5=5,
a=3,
这组数据从小到大排列3,3,1,7,8,
所以,中位数是1.
故答案是:1.
考查平均数与中位数的意义.
平均数是指在一组数据中所有数据之和再除以数据的个数.
中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
二、解答题(本大题共3个小题,共30分)
24、(1)3,1.5;(1)见解析;(3)1.
【解析】
(1)当时,,即可求解;
(1)描点描绘出以下图象,
(3)在(1)图象基础上,画出,两个函数交点为,,即可求解.
【详解】
解:(1)当时,,同理当时,,
故答案为3,1.5;
(1)描点描绘出以下图象,
(3)在(1)图象基础上,画出,
两个函数交点为,,
即,
故答案为1.
本题考查的是反比例函数综合运用,涉及到一次函数基本性质、复杂函数的作图,此类题目通常在作图的基础上,依据图上点和线之间的关系求解.
25、(1)(2)或
【解析】
(1)首先设反比例函数解析式为y=,把点(-1,3)代入反比例函数解析式,进而可以算出k的值,进而得到解析式;
(2)根据反比例函数图象可直接得到答案.
【详解】
(1)设反比例函数解析式为,把点代入得:,
∴函数解析式为;(2)或.
此题主要考查了待定系数法求反比例函数解析式,以及利用函数图象求自变量的值,关键是掌握凡是反比例函数图象经过的点必能满足解析式.
26、(1);(2).
【解析】
(1)利用待定系数法求得反比例函数的解析式,即可得出点B的坐标,再求出一次函数的解析式即可;(2)利用一次函数求得C点坐标,再根据割补法即可得出△AOB的面积.
【详解】
(1)解:∵,,
∴点的坐标为,
则,
得.
∴反比例函数的解析式为,
∵点的纵坐标是-1,
∴,得.
∴点的坐标为.
∵一次函数的图象过点、点.
∴,
解得:,
即直线的解析式为.
(2)∵与轴交与点,
∴点的坐标为,
∴,
∴
.
本题考查了反比例函数与一次函数的交点问题,把两个函数关系式联立方程求解,若方程有解则有交点,反之无交点.
题号
一
二
三
四
五
总分
得分
阅读时间(小时)
2
2.5
3
3.5
4
学生人数(名)
1
2
8
6
3
2.5
3
3.5
4
4.5
5
6
____
2
____
1.2
1
云南省红河哈尼族彝族自治州泸西县2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份云南省红河哈尼族彝族自治州泸西县2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
天津滨海新区2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份天津滨海新区2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届重庆清化中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届重庆清化中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。