云南省曲靖市麒麟区第十中学2024-2025学年九上数学开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点在第一象限,若点关于轴的对称点在直线上,则的值为( )
A.3B.2C.1D.-1
2、(4分)下列曲线中不能表示是的函数的是( )
A.(A)B.(B)C.(C)D.(D)
3、(4分)将一个边长为4cn的正方形与一个长,宽分別为8cm,2cm的矩形重叠放在一起,在下列四个图形中,重叠部分的面积最大的是( )
A. B.C.D.
4、(4分)在平面直角坐标系中,若点在第一象限内,则点所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)如图,矩形ABCD中,AB=6,BC=8,E是AD边上一点,连接CE,将△CDE沿CE翻折,点D的对应点是F,连接AF,当△AEF是直角三角形时,AF的值是( )
A.4B.2C.4,2D.4,5,2
6、(4分)下列语句:(1)可以把半径相等的两个圆中的一个看成是由另一个平移得到的;(2)可以把两个全等图形中的一个看成是由另一个平移得到的;(3)经过旋转,对应线段平行且相等;(4)中心对称图形上每一对对应点所连成的线段都被对称中心平分.其中正确的有( )
A.一个B.两个C.三个D.四个
7、(4分)分式有意义的条件是( )
A.B.C.D.
8、(4分)如图,要测量被池塘隔开的A、C两点间的距离,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得EF两点间距离等于23米,则A、C两点间的距离为()米
A.23B.46C.50D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)以1,1,为边长的三角形是___________三角形.
10、(4分)当x=______时,分式的值是1.
11、(4分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.
12、(4分)a、b、c是△ABC三边的长,化简+|c-a-b|=_______.
13、(4分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时出发,已知先遣队的行进速度是大部队行进速度的1.2倍,预计先遣队比大部队早0.5小时到达目的地,求先遣队与大部队的行进速度。
15、(8分)计算:(1)-;
(2)(1-)
16、(8分)《九章算术》“勾股”章的问题::“今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会.问甲、乙各行几何?”大意是说:如图,甲乙二人从A处同时出发,甲的速度与乙的速度之比为7:3,乙一直向东走,甲先向南走十步到达C处,后沿北偏东某方向走了一段距离后与乙在B处相遇,这时,甲乙各走了多远?
17、(10分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.
(1)若该方程有一根为2,求a的值及方程的另一根;
(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
18、(10分)垫球是排球运动的一项重要技术.下列图表中的数据分别是甲、乙、内三个运动员十次垫球测试的成绩,规则为每次测试连续垫球10个,每垫球到位1个记1分.
(1)写出运动员甲测试成绩的众数和中位数;
(2)试从平均数和方差两个角度综合分析,若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、s丙2=0.81)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为____m.
20、(4分)如图所示的圆形工件,大圆的半径为,四个小圆的半径为,则图中阴影部分的面积是_____(结果保留).
21、(4分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB:AD=___________时,四边形MENF是正方形.
22、(4分)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为__(用含n的代数式表示,n为正整数).
23、(4分)如图,经过平移后得到,下列说法错误的是( )
A.B.
C.D.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,抛物线与轴交于两点和与轴交于点动点沿的边以每秒个单位长度的速度由起点向终点运动,过点作轴的垂线,交的另一边于点将沿折叠,使点落在点处,设点的运动时间为秒.
(1)求抛物线的解析式;
(2)N为抛物线上的点(点不与点重合)且满足直接写出点的坐标;
(3)是否存在某一时刻,使的面积最大,若存在,求出的值和最大面积;若不存在,请说明理由.
25、(10分)某校为了开展“书香墨香进校园”活动,购买了一批毛笔和墨水.已知毛笔的单位比墨水的单价多5元,购买毛笔用了450元,墨水用了150元,毛笔数量是墨水数量的2倍.求这批毛笔和墨水的数量分别是多少?
26、(12分)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.
求证:(1)△AED≌△CFD;
(2)四边形ABCD是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.
【详解】
解:∵点A(2,m),
∴点A关于x轴的对称点B(2,−m),
∵B在直线y=−x+1上,
∴−m=−2+1=−1,
∴m=1,
故选C.
此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.
2、B
【解析】
分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.
详解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
选项B中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故B中曲线不能表示y是x的函数.
故选:B.
点睛:考查了函数的概念,理解函数的定义,是解决本题的关键.
3、B
【解析】
分别计算出各个图形的重叠部分面积即可求解.
【详解】
A.重叠部分为矩形,长是4宽是2,,所以面积为4×2=8;
B.重叠部分是平行四边形,与正方形边重合部分的长大于2,高是4,所以面积大于8;
C. 图C与图B对比,因为图C的倾斜度比图B的倾斜度小,所以,图C的底比图B的底小,两图为等高不等底,所以图C阴影部分的面积小于图B阴影部分的面积;
D.如图,BD=,GE=DE=2,HF=BF=2,
∴GH=,
∴S重叠部分=,小于8;
故选B.
本题主要考查平行四边形的、矩形及梯形的面积的运算,分别对选项进行计算判断即可.
4、C
【解析】
根据各象限内点的坐标特征解答即可.
【详解】
解:由点A(a,b)在第一象限内,得
a>0,b>0,
由不等式的性质,得
-a<0,-b<0,
点B(-a,-b)所在的象限是第三象限,
故选:C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、C
【解析】
当∠AFE=90°时,由∠AFE=∠EFC=90°可知点F在AC上,先依据勾股定理求得AC的长,然后结合条件FC=DC=3,可求得AF的长;当∠AFE=90°,可证明四边形CDEF为正方形,则EF=3,AE=4,最后,依据勾股定理求解即可.
【详解】
如下图所示:当点F在AC上时.
∵AB=3,BC=8,
∴AC=1.
由翻折的性质可知:∠EFC=∠D=90°,CF=CD=3,
∴AF=4.
如下图所示:
∵∠FED=∠D=∠DCF=90°,
∴四边形CDEF为矩形.
由翻折的性质可知EF=DE,
∴四边形CDEF为正方形.
∴DE=EF=3.
∴AE=4.
∴AF===4.
综上所述,AF的长为4或4.
故选:C.
本题主要考查的是翻折的性质,依据题意画出符合题意的图形是解题的关键.
6、B
【解析】
根据平移的性质,对各语句进行一一分析,排除错误答案.
【详解】
(1)可以把半径相等的两个圆中的一个看成是由另一个平移得到的,正确;
(2)可以把两个全等图形中的一个看成是由另一个平移得到的,错误;平移既需要两个图形全等,还需要两个图形有一种特殊的位置关系,
(3)经过平移,对应线段平行且相等,故原语句错误;
(4)中心对称图形上每一对对应点所连成的线段都被对称中心平分,正确.
故选B.
本题利用了平移的基本性质:①图形平移前后的形状和大小没有变化,只是位置发生变化;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
7、C
【解析】
根据分式有意义的定义即可得出答案.
【详解】
∵分式有意义
∴x-2≠0,即x≠2
故答案选择C.
本题考查的是分式有意义,比较简单,分式有意义即分母不等于0.
8、B
【解析】
先判断出EF是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2EF.
【详解】
解:∵点E、F分别是BA和BC的中点,
∴EF是△ABC的中位线,
∴AC=2EF=2×23=46米.
故选:B.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、等腰直角
【解析】
根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.
【详解】
∵
∴是等腰三角形
∵
∴是直角三角形
∴该三角形是等腰直角三角形
故答案为:等腰直角.
本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.
10、1
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值是1,
∴x=1.
故答案为:1.
此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.
11、1
【解析】
试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.
∵E,F分别是AD,BD的中点, ∴EF为△ABD的中位线, ∴AB=2EF=4,
∵四边形ABCD为菱形, ∴AB=BC=CD=DA=4, ∴菱形ABCD的周长=4×4=1.
考点:(1)菱形的性质;(2)三角形中位线定理.
12、2a.
【解析】
可根据三角形的性质:两边之和大于第三边.依此对原式进行去根号和去绝对值.
【详解】
∵a、b、c是△ABC三边的长
∴a+c-b>0,a+b-c>0
∴原式=|a-b+c|+|c-a-b|
=a+c-b+a+b-c
=2a.
故答案为:2a.
考查了二次根式的化简和三角形的三边关系定理.
13、15
【解析】
l1∥l2∥l3,
,
所以,所以AC=15.
三、解答题(本大题共5个小题,共48分)
14、大部队的行进速度为5千米/时,先遣队的行进速度为6千米/时
【解析】
【分析】设大部队的行进速度为x千米/时,则先遣队的行进速度为1.2x千米/时.由“先遣队比大部队早0.5小时到达目的地”,即时间关系可以列出,求解可得.
【详解】设大部队的行进速度为x千米/时,则先遣队的行进速度为1.2x千米/时.根据题意,可列出方程
.
解得 .
经检验, 是原方程的根,且符合题意.
当 时,
答:大部队的行进速度为5千米/时,先遣队的行进速度为6千米/时
【点睛】本题考核知识点:列分式方程解应用题.解题关键点:根据时间差关系列出方程.
15、(1);(2)a+1
【解析】
(1)直接化简二次根式进而合并得出答案;
(2)直接将括号里面通分进而利用分式的混合运算法则计算即可.
【详解】
(1)原式=2-+3
=;
(2)原式=×
=a+1.
此题主要考查了分式的混合运算以及二次根式的加减运算,正确掌握相关运算法则是解题关键.
16、甲行24.1步,乙行10.1步.
【解析】
分析:甲乙同时出发二者速度比是7:3,设相遇时甲行走了7t,乙行走了3t根据二者的路程关系可列方程求解.
详解:设经x秒二人在B处相遇,这时乙共行AB=3x,
甲共行AC+BC=7x,
∵AC=10,
∴BC=7x-10,
又∵∠A=90°,
∴BC2=AC2+AB2,
∴(7x-10)2=102+(3x)2,
解得:x1=0(舍去),x2=3.1,
∴AB=3x=10.1,
AC+BC=7x=24.1.
答:甲行24.1步,乙行10.1步.
点睛:本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形.
17、(3)a=,方程的另一根为;(2)答案见解析.
【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
【详解】
(3)将x=2代入方程,得,解得:a=.
将a=代入原方程得,解得:x3=,x2=2.
∴a=,方程的另一根为;
(2)①当a=3时,方程为2x=3,解得:x=3.
②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
18、 (1) 甲的众数和中位数都是7分;(2) 选乙运动员更合适,理由见解析
【解析】
(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;
(2)分别求得数据的平均数,然后结合方差作出判断即可.
【详解】
(1)甲运动员测试成绩中7出现的次数最多,故众数为7;
成绩排序为:5,6,7,7,7,7,7,8,8,8,
所以甲的中位数为=7,
所以甲的众数和中位数都是7分.
(2)∵=(7+6+8+7+7+5+8+7+8+7)=7(分),
=(6+6+7+7+7+7+7+7+8+8)=7(分),
=(5×2+6×4+7×3+8×1)=6.3(分),
∴=,S甲2>S乙2,
∴选乙运动员更合适.
本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.6
【解析】
确定出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.
【详解】
解:∵跷跷板AB的支柱OD经过它的中点O,AC、OD都与地面垂直,
∴OD是△ABC的中位线,
∴AC=2OD=2×0.8=1.6米.
故答案为1.6米.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.
20、3080π.
【解析】
用大圆的面积减去4个小圆的面积即可得到剩余部分的面积,然后把R和r的值代入计算出对应的代数式的值.
【详解】
依题意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).
答:剩余部分面积为3080πmm1.
故答案为:3080π.
本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.
21、1:1
【解析】
试题分析:当AB:AD=1:1时,四边形MENF是正方形,
理由是:∵AB:AD=1:1,AM=DM,AB=CD,
∴AB=AM=DM=DC,
∵∠A=∠D=90°,
∴∠ABM=∠AMB=∠DMC=∠DCM=45°,
∴∠BMC=90°,
∵四边形ABCD是矩形,
∴∠ABC=∠DCB=90°,
∴∠MBC=∠MCB=45°,
∴BM=CM,
∵N、E、F分别是BC、BM、CM的中点,
∴BE=CF,ME=MF,NF∥BM,NE∥CM,
∴四边形MENF是平行四边形,
∵ME=MF,∠BMC=90°,
∴四边形MENF是正方形,
即当AB:AD=1:1时,四边形MENF是正方形,
故答案为:1:1.
点睛:本题考查了矩形的性质、正方形的判定、三角形中位线定理等知识,熟练应用正方形的判定方法是解题关键.
22、.
【解析】
试题分析:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,
∵A2B1=A1B1=1,∴A2C1=2=,∴=,
同理得:A3C2=4=,…,=,
∴=,
故答案为.
考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.
23、D
【解析】
根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.
【详解】
A、AB∥DE,正确;
B、,正确;
C、AD=BE,正确;
D、,故错误,
故选D.
本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)(-5,1)或(,-1)或(,-1);(1)存在,时,有最大值为.
【解析】
(1)把A(-1,0),B(1,0)代入y=ax2+bx+1,得到关于a、b的二元一次方程组,解方程组即可得到结论;
(2)由抛物线解析式求出C(0,1),根据同底等高的两个三角形面积相等,可知N点纵坐标的绝对值等于1,将y=±1分别代入二次函数解析式,求出x的值,进而得到N点的坐标;
(1)由于点D在y轴的右侧时,过点作轴的垂线,无法与 的另一边相交,所以点D在y轴左侧,根据题意求出直线AC的解析式及E,D,F的坐标,然后根据三角形面积求得与t的函数关系式,然后利用二次函数的性质求最值即可.
【详解】
解:(1)把A(-1,0),B(1,0)代入y=ax2+bx+1中,得
,解得 ,
∴抛物线的解析式为:,
(2)∵抛物线与y轴交于点C,
∴C(0,1).
∵N为抛物线上的点(点不与点重合)且S△NAB=S△ABC,
∴设N(x,y),则|y|=1.
把y=1代入,得,解得x=0或-5,
x=0时N与C点重合,舍去,
∴N(-5,1);
把y=-1代入,得,解得
∴N(,-1)或(,-1).
综上所述,所求N点的坐标为(-5,1)或(,-1)或(,-1);
(1)存在.
由题意可知,∵过点作轴的垂线,交的另一边于点
∴点D必在y轴的左侧.
∵AD=2t,
∴由折叠性质可知DF=AD=2t,
∴OF=1-4t,
∴D(2t-1,0),
∵设直线AC的解析式为:,将A(-1,0)和C(0,1)代入解析式得 ,解得
∴直线AC的解析式为:
∴E(2t-1,2t).
∴
∵-4<0
时,有最大值为.
本题是二次函数综合题,其中涉及到利用待定系数法求直线、抛物线的解析式,二次函数的性质,三角形的面积等知识.利用数形结合是解题的关键.
25、墨水的单价是10元,则毛笔的单价是15元.
【解析】
设墨水的单价是x元,则毛笔的单价是(x+5)元,根据用450元购进的毛笔的数量是用150元购进的墨水的数量的2倍建立方程求出其解即可.
【详解】
设墨水的单价是x元,则毛笔的单价是(x+5)元,由题意,得
,
解得:x=10,
经检验,x=10是原方程的根
∴x+5=15元,
答:墨水的单价是10元,则毛笔的单价是15元.
本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
26、(1)证明见解析;(2)证明见解析.
【解析】
分析:(1)由全等三角形的判定定理ASA证得结论;
(2)由“邻边相等的平行四边形为菱形”证得结论.
详解:(1)证明:∵四边形ABCD是平行四边形,
∴∠A=∠C.
在△AED与△CFD中,
,
∴△AED≌△CFD(ASA);
(2)由(1)知,△AED≌△CFD,则AD=CD.
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.
题号
一
二
三
四
五
总分
得分
批阅人
测试序号
1
2
3
4
5
6
7
8
9
10
成绩(分)
7
6
8
7
7
5
8
7
8
7
2024-2025学年云南省曲靖市数学九上开学经典试题【含答案】: 这是一份2024-2025学年云南省曲靖市数学九上开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年云南省曲靖市马龙县数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年云南省曲靖市马龙县数学九上开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年云南省曲靖市马龙区通泉中学九上数学开学调研试题【含答案】: 这是一份2024-2025学年云南省曲靖市马龙区通泉中学九上数学开学调研试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。