云南省昆明市呈贡区2025届数学九上开学学业水平测试试题【含答案】
展开
这是一份云南省昆明市呈贡区2025届数学九上开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在□ABCD中,下列结论不一定成立的是( )
A.∠1=∠2B.AD=DCC.∠ADC=∠CBAD.OA=OC
2、(4分)如图所示,在中,,则为( )
A.B.C.D.
3、(4分)当x=1时,下列式子无意义的是( )
A.B.C.D.
4、(4分)在中,,则的长为( )
A.2B.C.4D.4或
5、(4分)如图,平行四边形ABCD的对角线AC,BD交于点O,已知AD=16,BD=24,AC=12,则△OBC周长为( )
A.26B.34C.40D.52
6、(4分)已知四边形ABCD的对角线AC、BD相交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是( )
A.,
B.,
C.,
D.,
7、(4分)勾股定理是“人类最伟大的十个科学发现之一”.中国对勾股定理的证明最早出现在对《周髀算经》的注解中,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.在《周髀算经》注解中证明勾股定理的是我国古代数学家( )
A.祖冲之B.杨辉C.刘徽D.赵爽
8、(4分)一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是( )
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)实施素质教育以来,某中学立足于学生的终身发展,大力开发课程资源,在七年级设立六个课外学习小组,下面是七年级学生参加六个学习小组的统计表和扇形统计图,请你根据图表中提供的信息回答下列问题.
(1)七年级共有学生 人;
(2)在表格中的空格处填上相应的数字;
(3)表格中所提供的六个数据的中位数是 ;
(4)众数是 .
10、(4分)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.
11、(4分)计算__.
12、(4分)计算: _____________.
13、(4分)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
15、(8分)在菱形ABCD中,∠BAD=60°.
(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;
(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.
16、(8分)化简:
(1)
(2)(x﹣)÷
17、(10分)求不等式(2x﹣1)(x+1)>0的解集.
解:根据“同号两数相乘,积为正”可得:①或 ②.
解①得x>;解②得x<﹣1.
∴不等式的解集为x>或x<﹣1.
请你仿照上述方法解决下列问题:
(1)求不等式(2x﹣1)(x+1)<0的解集.
(2)求不等式≥0的解集.
18、(10分)如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.
(1)求证:(BE+BF)2=2OB2;
(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于 (用含a的代数式表示)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于_____.
20、(4分)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.
21、(4分)直线向下平移2个单位长度得到的直线是__________.
22、(4分)某学生会倡导的“爱心捐款”活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为,又知此次调查中捐15元和20元的人数共26人.
(1)他们一共抽查了______人;
(2)抽查的这些学生,总共捐款______元.
23、(4分)已知关于的方程的解是正数,则的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.
(1)求证:BG=CF;
(2)求证:CF=2DE;
(3)若DE=1,求AD的长
25、(10分)如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A(15,0),B两点,正比例函数y=x的图象l2与l1交于点C(m,3).
(1)求m的值及l1所对应的一次函数表达式;
(2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.
26、(12分)计算能力是数学的基本能力,为了进一步了解学生的计算情况,初2020级数学老师们对某次考试中第19题计算题的得分情况进行了调查,现分别从A、B两班随机各抽取10名学生的成绩如下:
A班10名学生的成绩绘成了条形统计图,如下图,
B班10名学生的成绩(单位:分)分别为:9,8,9,10,9,7,9,8,10,8
经过老师对所抽取学生成绩的整理与分析,得到了如下表数据:
根据以上信息,解答下列问题.
(1)补全条形统计图;
(2)直接写出表中a,b,c的值:a= ,b= ,c= ;
(3)根据以上数据,你认为A、B两个班哪个班计算题掌握得更好?请说明理由(写出其中两条即可): .
(4)若9分及9分以上为优秀,若A班共55人,则A班计算题优秀的大约有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形对边平行可得AD∥BC,进而有∠1=∠2,则A项正确;
接下来对于其余三个选项,利用平行四边形的性质,分析图中相等线段和相等角,逐一验证即可.
【详解】
A,平行四边形对边平行,则AD∥BC,故有∠1=∠2,正确;
B,平行四边形的邻边不一定相等,则AD=DC,错误;
C,平行四边形的对角相等,则∠ADC=∠CBA ,正确;
D,平行四边形对角线互相平分,则OA=OC,正确.
故选B.
本题考查平行四边形的性质,两组对边分别平行且相等,对角线互相平分
2、D
【解析】
根据直角三角形的两个锐角互余的性质解答.
【详解】
解:在△ABC中,∠C=90°,则x+2x=90°.
解得:x=30°.
所以2x=60°,即∠B为60°.
故选:D.
本题考查了直角三角形的性质,直角三角形的两个锐角互余,由此借助于方程求得答案.
3、C
【解析】
分式无意义则分式的分母为0,据此求得x的值即可.
【详解】
A、x=0分式无意义,不符合题意;
B、x=﹣1分式无意义,不符合题意;
C、x=1分式无意义,符合题意;
D、x取任何实数式子有意义,不符合题意.
故选C.
此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
4、D
【解析】
分b是斜边、b是直角边两种情况,根据勾股定理计算即可.
【详解】
解:当b是斜边时,c=,
当b是直角边时,c=,
则c=4或,
故选:D.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
5、B
【解析】
由平行四边形的性质得出OA=OC=6,OB=OD=12,BC=AD=16,即可求出△OBC的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC=6,OB=OD=12,BC=AD=16,
∴△OBC的周长=OB+OC+AD=6+12+16=1.
故选:B.
点睛:本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
6、C
【解析】
根据平行四边形的判定定理分别进行分析即可.
【详解】
A、∵∠ADB=∠CBD,
∴AD∥BC,
∵AB∥CD,
∴四边形ABCD是平行四边形,故此选项不合题意;
B、∵∠ADB=∠CBD,
∴AD∥BC,
∵∠DAB=∠BCD,
∴∠BAD+∠ABC=∠ADC+∠BCD=180°,
∴∠ABC=∠ADC,
∴四边形ABCD是平行四边形,故此选项不符合题意;
C、∠DAB=∠BCD,AB=CD不能判定四边形ABCD是平行四边形,故此选项符合题意;
D、∵∠ABD=∠CDB,∠AOB=∠COD,OA=OC,
∴△AOB≌△COD(AAS),
∴OB=OC,
∴四边形ABCD为平行四边形,故此选项不合题意;
故选:C.
此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.
7、D
【解析】
在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.
【详解】
在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.
故选D.
我国古代的数学家很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.后人称它为“赵爽弦图”.
8、D
【解析】
试题分析:根据一次函数的性质,当y随x的增大而增大时,求得k的范围,在选项中找到范围内的值即可.
解:根据一次函数的性质,对于y=(k﹣3)x+2,
当(k﹣3)>0时,即k>3时,y随x的增大而增大,
分析选项可得D选项正确.
答案为D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(1)360;(2)1,108,20%;(3)63;(4)1.
【解析】
解:(1)读图可知:有10%的学生即36人参加科技学习小组,
故七年级共有学生:36÷10%=360(人).
故答案为360;
(2)统计图中美术占:1﹣30%﹣20%﹣10%﹣15%﹣5%=20%,
参加美术学习小组的有:
360×(1﹣30%﹣20%﹣10%﹣15%﹣5%)=360×20%=1(人),
奥数小组的有360×30%=108(人);
故答案为1,108,20%;
(3)(4)从小到大排列:18,36,54,1,1,108
故众数是1,中位数=(54+1)÷2=63;
故答案为63,1.
10、m>1
【解析】
试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
联立两直线解析式得:,
解得:,
即交点坐标为(,),
∵交点在第一象限,
∴,
解得:m>1.
考点:一次函数图象与几何变换.
11、
【解析】
通过原式约分即可得到结果.
【详解】
解:原式=,
故答案为:.
此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.
12、1
【解析】
根据开平方运算的法则计算即可.
【详解】
1.
故答案为:1.
本题考查了实数的运算-开方运算,比较简单,注意符号的变化.
13、5
【解析】
解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,
∴(3+4)=(2+3+4+x),
解得:x=5;
故答案为5
三、解答题(本大题共5个小题,共48分)
14、y=x+
【解析】
试题分析:根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.
解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,
∴k=
∴y与x的函数关系式为.
考点:待定系数法求一次函数解析式.
15、(1)2 (2)证明见解析
【解析】
试题分析:(1)如图1,连接对角线BD,先证明△ABD是等边三角形,根据E是AB的中点,由等腰三角形三线合一得:DE⊥AB,利用勾股定理依次求DE和EC的长;
(2)如图2,作辅助线,构建全等三角形,先证明△ADH是等边三角形,再由△AMN是等边三角形,得条件证明△ANH≌△AMD(SAS),则HN=DM,根据DQ是△CHN的中位线,得HN=2DQ,由等量代换可得结论.
试题解析:解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===;
(2)如图2,延长CD至H,使CD=DH,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵AH=AD,∠HAN=∠DAM,AN=AM,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.
点睛:本题考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH≌△AMD是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.
16、 (1);(2) x2+x.
【解析】
(1)根据分式的性质,结合完全平方公式和平方差公式化简即可;
(2)根据分式的性质,结合完全平方公式和平方差公式化简即可.
【详解】
解:(1)
=
=
= ;
(2)
=
=x(x+1)
=x2+x.
本题主要考查分式的化简,结合考查完全平方公式和平方差公式,应当熟练掌握.
17、(1)﹣1<x<;(2)x≥1或x<﹣2.
【解析】
(1)、(2)根据题意得出关于x的不等式组,求出x的取值范围即可.
【详解】
解:(1)根据“异号两数相乘,积为负”可得①或②,
解①得不等式组无解;解②得,﹣1<x<;
(2)根据“同号两数相除,积为正”可得①,②,
解①得,x≥1,解②得,x<﹣2,
故不等式组的解集为:x≥1或x<﹣2.
故答案为(1)﹣1<x<;(2)x≥1或x<﹣2.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
18、(1)证明见解析;(1).
【解析】
(1)由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,可得AE=BF,可得BE+BF=AB,由勾股定理可得结论;
(1)由全等三角形的性质可得S△AOE=S△BOF,可得重叠部分的面积为正方形面积的,即可求解.
【详解】
解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°.
∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.
在△AOE和△BOF中
,
∴△AOE≌△BOF(ASA),
∴AE=BF,
∴BE+EF=BE+AE=AB
在Rt△AOB中,AB1=OA1+OB1,且OA=OB,
∴(BE+BF)1=1OB1,
(1)∵△AOE≌△BOF,
∴S△AOE=S△BOF,
∴重叠部分的面积=S△AOB=S正方形ABCD=a1.
故答案为:a1.
本题考查了正方形的性质和全等三角形的判定和性质,掌握全等三角形的判定是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、80°
【解析】
根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=4:5,求出∠B即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=4:5,
∴∠B=×180°=80°,
故答案为:80°.
本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键.
20、10
【解析】
(36-20)÷3=2(cm).
设放入x小球有水溢出,由题意得
2x+30>49, ∴x>9.5, ∴放入10小球有水溢出.
21、
【解析】
根据一次函数图象几何变换的规律得到直线y=1x向下平移1个单位得到的函数解析式为y=1x-1.
【详解】
解:直线y=1x向下平移1个单位得到的函数解析式为y=1x-1
故答案为:y=1x-1
本题考查了一次函数图象几何变换规律:一次函数y=kx(k≠0)的图象为直线,直线平移时k值不变,当直线向上平移m(m为正数)个单位,则平移后直线的解析式为y=kx+m.当直线向下平移m(m为正数)个单位,则平移后直线的解析式为y=kx-m.
22、1, 2.
【解析】
(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.构建方程即可解决问题.
(2)根据捐款人数以及捐款金额,求出总金额即可.
【详解】
解:(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.
由题意:5x+8x=26,
解得x=2,
∴一共有:6+8+10+16+4=1人,
故答案为1.
(2)总共捐款额=6×5+8×10+10×15+16×20+4×30=2(元).
故答案为:2.
本题考查频数分布直方图,抽样调查等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
23、m>-6且m-4
【解析】
试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.
试题解析:分式方程去分母得:2x+m=3(x-2),
解得:x=m+6,
根据题意得:x=m+6>0,且m+6≠2,
解得:m>-6,且m≠-4.
考点: 分式方程的解.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;
(2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;
(3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x +(2x)=3,解得x= ,所以BC=,AB= BC=,然后在Rt△ABD中利用勾股定理计算AD的长.
【详解】
(1)证明:∵∠ACB=90°,AC=BC,
∴△ACB为等腰直角三角形,
∴∠CAF=∠ACG=45°,
∵CG平分∠ACB,
∴∠BCG=45°,
在△BCG和△CFA中
,
∴△BCG≌△CFA,
∴BG=CF;
(2)证明:连结AG,
∵CG为等腰直角三角形ACB的顶角的平分线,
∴CG垂直平分AB,
∴BG=AG,
∴∠GBA=∠GAB,
∵AD⊥AB,
∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,
∴∠D=∠GAD,
∴AG=DG,
∴BG=DG,
∵CG⊥AB,DA⊥AB,
∴CG∥AD,
∴∠DAE=∠GCE,
∵E为AC边的中点,
∴AE=CE,
在△ADE和△CGE中
,
∴△ADE≌△CGE,
∴DE=GE,
∴DG=2DE,
∴BG=2DE,
∵△BCG≌△CFA,
∴CF=BG,
∴CF=2DE;
(3)∵DE=1,
∴BG=2,GE=1,即BE=3,
设CE=x,则BC=AC=2CE=2x,
在Rt△BCE中,x+(2x) =3,解得x=,
∴BC=,
∴AB= BC=,
在Rt△ABD中,∵BD=4,AB= ,
∴AD=.
此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线
25、(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
【解析】
(1)先求得点C的坐标,再运用待定系数法即可得到l1的解析式;
(2)根据函数图象,结合C点的坐标即可求得.
【详解】
解:(1)把C(m,3)代入正比例函数y=x,可得3=m,
解得m=1,
∴C(1,3),
∵一次函数y=kx+b的图象l1分别过A(15,0),C(1,3),
∴ 解得,
∴l1的解析式为y=-x+5;
(2)由图象可知:第一象限内,一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围是0<x<1.
故答案为(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
本题考查两条直线相交或平行问题,关键是掌握待定系数法求函数解析式.
26、(1)见解析;(2)8.7,8, 9;(3)B班计算题掌握的更好,理由见详解;(4)A班计算题优秀的大约有22人.
【解析】
(1)先根据A班的总人数求出成绩为 10分的人数,然后即可补全条形统计图 ;
(2)利用平均数的公式和中位数,众数的概念求解即可;
(3)通过对比两班的平均数,中位数,众数,极差和方差即可得出答案;
(4)用总人数55乘以优秀人数所占的百分比即可得出答案.
【详解】
(1)成绩为10分的人数=10﹣1﹣2﹣3﹣1=3,
补全条形统计图如图所示,
(2)a=(9+8+9+10+9+7+9+8+10+8)=8.7;
中位数是将A班的10个成绩按照从小到大的顺序排列之后处于中间位置的数,此时第5个数和第6个数都是8,所以 ;
众数为B班成绩中出现次数最多的数,可以看出9出现了4次,次数最多,所以c=9;
(3)B班学生计算题掌握得更好,理由:
B班的平均分高于A班,B班的中位数高于A班;
(4)55×=22人,
答:A班计算题优秀的大约有22人.
本题主要考查数据的分析与整理,掌握平均数,中位数,众数的求法是解题的关键.
题号
一
二
三
四
五
总分
得分
学习小组
体育
美术
科技
音乐
写作
奥数
人数
72
36
54
18
A班
B班
平均数
8.3
a
中位数
b
9
众数
8或10
c
极差
4
3
方差
1.81
0.81
学习小组
体育
美术
科技
音乐
写作
奥数
人数
1
1
36
54
18
108
相关试卷
这是一份2025届云南省玉溪市红塔区云数学九上开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届云南省丽江市名校九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届云南省昆明市五华区昆明长城中学数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。