云南省昆明市八校2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,一次函数与的图像互相平行,如果这两个函数的部分自变量和对应的函数值如下表所示:
那么的值是( )
A.B.C.D.
2、(4分)函数中自变量x的取值范围是( )
A.B.且C.x<2且D.
3、(4分)已知:,计算:的结果是()
A.B.C.D.
4、(4分)已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是( )
A.B.C.D.
5、(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形
C.当AC=BD时,四边形ABCD是矩形D.当∠ABC=90°时,四边形ABCD是正方形
6、(4分)已知|a+1|+=0,则b﹣1=( )
A.﹣1B.﹣2C.0D.1
7、(4分)如图,在平行四边形中,下列结论不一定成立的是( )
A.B.
C.D.
8、(4分)下列事件为随机事件的是( )
A.367人中至少有2人生日相同B.打开电视,正在播广告
C.没有水分,种子发芽D.如果、都是实数,那么
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.
10、(4分)已知:如图,、分别是的中线和角平分线,,,则的长等于__.
11、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
12、(4分)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第 象限.
13、(4分)如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF、DE.
(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)
(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.
(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.
15、(8分)解方程:x2﹣2x=1.
16、(8分)某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了 10400 元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.
(1)甲、乙两种款型的T恤衫各进货多少件?
(2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)
17、(10分)如图,Rt△ABC中,分别以AB、AC为斜边,向△ABC的内侧作等腰Rt△ABE、Rt△ACD,点M是BC的中点,连接MD、ME.
(1)若AB=8,AC=4,求DE的长;
(2)求证:AB-AC=2DM.
18、(10分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.
(1)求直线y=kx+b的表达式;
(2)当x取何值时,y>1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集______.
20、(4分)如图是一块地的平面示意图,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,则这块地的面积为_____m2.
21、(4分)对我国首艘国产航母002型各零部件质量情况的调查,最适合采用的调查方式是_____.
22、(4分)已知 ,则 y x 的值为_____.
23、(4分)化简: 的结果是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)勾股定理是几何学中的明珠,它充满魅力,在现实世界中有着广泛的应用.请你尝试应用勾股定理解决下列问题:一架长的梯子斜靠在一竖直的墙上,这时为,如果梯子的顶端沿墙下滑,那么梯子底端向外移了多少米?(注意:)
25、(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
(1)统计表中的________,________,________;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.
26、(12分)今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)这次共抽取了_________名学生进行调查统计;
(2)将条形统计图补充完整,扇形统计图中D类所对应的扇形圆心角大小为_________;
(3)如果该校共有3000名学生,请你估计该校B类学生约有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由一次函数y2=k2x+b2与y2=k2x+b2的图象互相平行,得出k2=k2,设k2=k2=a,将(m,-2)、(0,0)代入y2=ax+b2,得到am=-2;将(m,2)、(0,n)、(2,7)代入y2=ax+b2,解方程组即可求出m的值.
【详解】
解:∵一次函数y2=k2x+b2与y2=k2x+b2的图象互相平行,
∴k2=k2,
设k2=k2=a,则y2=ax+b2,y2=ax+b2.
将(m,-2)、(0,0)代入y2=ax+b2,得am=-2①;
将(m,2)、(0,n)、(2,7)代入y2=ax+b2,
得am+n=2②,2a+n=7③,
①代入②,得n=3,
把n=3代入③,得a=2,
把a=2代入①,得m=-2.
故选:A.
本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.即若直线y2=k2x+b2与直线y2=k2x+b2平行,那么k2=k2.也考查了一次函数图象上点的坐标特征.难度适中.
2、B
【解析】
由已知得:且,
解得:且.
故选B.
3、C
【解析】
原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.
【详解】
∵,,
∴
,
故选:C.
本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
4、C
【解析】
由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.
【详解】
解:由题意得:(10×14+15×6)÷20=11.5,
故选:C.
此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可.
.
5、D
【解析】
根据邻边相等的平行四边形是菱形;根据对角线互相垂直的平行四边形是菱形;根据对角线相等的平行四边形是矩形;根据有一个角是直角的平行四边形是矩形.
【详解】
解:∵四边形ABCD是平行四边形,则
A、当AB=BC时,四边形ABCD是菱形,正确;
B、当AC⊥BD时,四边形ABCD是菱形,正确;
C、当AC=BD时,四边形ABCD是矩形,正确;
D、当∠ABC=90°时,四边形ABCD是矩形,故D错误;
故选:D.
本题考查了菱形的判定和矩形的判定,解题的关键是熟练掌握菱形和矩形的判定定理.
6、B
【解析】
根据非负数的性质求出a、b的值,然后计算即可.
【详解】
解:∵|a+1|+=0,
∴a+1=0,a-b=0,
解得:a=b=-1,
∴b-1=-1-1=-1.
故选:B.
本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a、b的值是解决此题的关键.
7、D
【解析】
根据平行四边形的性质得到AD//BC、、从而进行判断.
【详解】
因为四边形是平行四边形,
所以AD//BC、、,(故B、C选项正确,不符合题意)
所以,(故A选项正确,不符合题意).
故选:D.
考查了平行四边形的性质,解题关键是熟记平行四边形的性质.
8、B
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
A. 367人中至少有2人生日相同 ,是必然事件,故A不符合题意;
B. 打开电视,正在播广告,是随机事件,故B符合题意;
C. 没有水分,种子发芽, 是不可能事件,故C不符合题意;
D. 如果、都是实数,那么,是必然事件,故D不符合题意.
故选B.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40
【解析】
【分析】推出DE是三角形ABC的中位线,即可求AB.
【详解】因为,D、E是AC、BC的中点,
所以,DE是三角形ABC的中位线,
所以,AB=2DE=40米
故答案为:40
【点睛】本题考核知识点:三角形中位线.解题关键点:理解三角形中位线的性质.
10、
【解析】
过D点作DF∥BE,则DF=BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC=AF.
【详解】
过点作,
是的中线,,
为中点,,
,则,,
是的角平分线,,
,
为中点,
为中点,
,
.
故答案为:.
本题考查了三角形中线、三角形中位线定理和角平分线的性质以及勾股定理的应用,作出辅助线构建直角三角形是解题的关键.
11、8
【解析】
根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
【详解】
解:在菱形ABCD中,AB=5,AC=6,
因为对角线互相垂直平分,
所以∠AOB=90°,AO=1,
在RT△AOB中,BO=,
∴BD=2BO=8.
注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
12、四.
【解析】
一次函数的图象有两种情况:
①当,时,函数的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当,时,函数的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当,时,函数的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当,时,函数的图象经过第二、三、四象限,y的值随x的值增大而减小.
由题意得,函数y=kx+2的y的值随x的值增大而增大,因此,.
由,,知它的图象经过第一、二、三象限,不经过第四象限.
13、
【解析】
连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.
【详解】
解:如图,连接BF
∵△ABC为等边三角形,AD⊥BC,AB=6,
∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
∵△CEF为等边三角形
∴CF=CE,∠FCE=60°
∴∠FCE=∠ACB
∴∠BCF=∠ACE
∴在△BCF和△ACE中
BC=AC,∠BCF=∠ACE,CF=CE
∴△BCF≌△ACE(SAS)
∴∠CBF=∠CAE=30°,AE=BF
∴当DF⊥BF时,DF值最小
此时∠BFD=90°,∠CBF=30°,BD=3
∴DF=BD=
故答案为:.
本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.
三、解答题(本大题共5个小题,共48分)
14、(1)DE=EF,见解析;(2)∠BAD=60°;(3)S四边形ABCD=6.
【解析】
(1)利用直角三角形斜边的中线性质和三角形的中位线性质可得结论;
(2)先证明∠CEF=∠BAD,∠DEC=∠BAD,根据∠DEF=90°列方程得∠BAD的度数;
(3)由四边形CDEF是菱形,说明△CDE是等边三角形,再根据等底同高说明△CDE与△DEA间关系,根据相似说明△CAB与△CEF间关系,由DE=2得AB=4,得等边△DEC的面积,利用三角形的面积间关系得结论.
【详解】
(1)DE=EF,
在△ABC中,点E,F分别为AC,BC的中点,
∴EF∥AB,且EF=AB,
在Rt△ACD中,点E为AC的中点,
∴DE=AC,
∵AB=AC,
∴DE=EF;
(2)∵AC平分∠BAD,EF∥AB,
DE=AC=AE=EC,
∴∠BAC=∠DAC,∠CEF=∠BAC,∠DEC=2∠DAC=∠BAD,
∵∠DEF=90°,
∴∠CEF+∠DEC=∠BAC+2∠DAC=90°,
∴∠BAC=∠DAC=30°,
∴∠BAD=60°;
(3)四边形ABCD的面积为:
∵四边形CDEF是菱形,EC=DE,
∴△CDE与△CEF都是等边三角形,
∵EF=DE=CD=CF=2,
∴AB=4,
∴S△DCE=S△DEA=S△CEF;
∵EF∥AB,
∴,
∴S△ABC=4S△CEF=4
∴S四边形ABCD=S△DCE+S△DEA+S△ABC=2×+4=6.
本题考查了四边形的综合问题,解题的关键是掌握三角形的中位线定理、直角三角形斜边的中线的性质、菱形的性质及等边三角形的面积等知识.题目难度中等,由题目原型到探究再到结论,步步深入,符合认知规律.
15、,.
【解析】
两边都加1,运用配方法解方程.
【详解】
解:,
,
,
所以,.
本题考核知识点:解一元二次方程. 解题关键点:掌握配方法.
16、(1)甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;(2)7520元.
【解析】
(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;
(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.
【详解】
解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,
依题意得: ,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
2x=1.
答:甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;
(2)甲进货价:10400÷1=130(元/件),乙进货价:6400÷40=160(元/件),
130×(1+60%)×1+160×(1+60%)×(40÷2)+160×(1+60%)×0.5×(40÷2)-10400-6400
=7520(元)
答:售完这批T恤衫商店共获利7520元.
本题考查列分式方程解实际问题,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
17、(1);(2)证明见解析.
【解析】
试题分析:(1)根据三角函数求得AE和AD的长,二者的差就是所求.
(2)延长CD交AB于点F,证明MD是△BCF的中位线,AF=AC,据此即可证得.
(1)直角△ABE中,AE=AB=,
在直角△ACD中,AD=AC=,
则DE=AE-AD=-=.
如图,延长CD交AB于点F.
在△ADF和△ADC中,∠FAD=∠CAD,AD=AD,∠ADF=∠ADC,∴△ADF≌△ADC(ASA).∴AC=AF,CD=DF.
又∵M是BC的中点,∴DM是△CBF的中位线.∴DM=BF=(AB-AF)=(AB-AC).
∴AB-AC=2DM.
考点:1.三角形中位线定理;2.等腰直角三角形3.全等三角形的判定和性质.
18、(1)y=x+11;(2)x>﹣20时,y>1.
【解析】
(1)利用待定系数法求一次函数解析式;
(2)解不等式x+11>1即可.
【详解】
(1)根据题意得,解得,
所以直线解析式为y=x+11;
(2)解不等式x+11>1得x>﹣20,
即x>﹣20时,y>1.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>-1
【解析】
试题分析:根据题意可得即>,也就是函数在函数的上方,根据图象可得当x>-1时,函数在函数的上方.
考点:一次函数与一元一次不等式的关系.
20、1
【解析】
试题解析:连接AC,
∵AD=4m,CD=3m,∠ADC=90°,
∴AC===5,
∵AB=13m,BC=12m,
∴AB2=BC2+CD2,即△ABC为直角三角形,
∴这块地的面积为S△ABC-S△ACD=AC•BC-AD•CD=×5×12-×3×4=1.
21、普查
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
对我国首艘国产航母002型各零部件质量情况的调查是事关重大的调查,最适合采用的调查方式是普查.
故答案为:普查
本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
22、-1
【解析】
根据二次根式的被开方数为非负数列不等式组解得x值,将x代入原式解得y值,即可求解.
【详解】
要使有意义,则:
,解得:x=1,代入原式中,
得:y=﹣1,
∴yx=(-1)1=-1,
故答案为:-1.
本题考查二次根式有意义的条件、解一元一次不等式组、幂的乘方,熟练掌握二次根式的被开方数为非负数是解答的关键.
23、
【解析】
原式= ,故答案为.
二、解答题(本大题共3个小题,共30分)
24、梯子底端向外移了0.77米.
【解析】
先根据勾股定理求出的长,再根据梯子的长度不变求出的长,根据即可得出结论.
【详解】
在中,,,
∴
同理,在中,
∵,,
∴,
∴.
答:梯子底端向外移了0.77米.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.
25、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
【解析】
分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
(2)根据a的值画出条形图即可;
(3)根据平均数的定义计算即可;
(4)用样本估计总体的思想解决问题即可;
详解:(1)由题意c==50,
a=50×0.2=10,b==0.28,c=50;
故答案为10,0.28,50;
(2)将频数分布表直方图补充完整,如图所示:
(3)所有被调查学生课外阅读的平均本数为:
(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
(4)该校七年级学生课外阅读7本及以上的人数为:
(0.28+0.16)×1200=528(人).
点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
26、(1)50;(2)图见解析,;(3)该校B类学生约有1320人.
【解析】
(1)根据A类的条形统计图和扇形统计图信息即可得;
(2)先根据题(1)的结论求出D类学生的人数,由此即可得补充条形统计图,再求出D类学生的人数占比,然后乘以可得圆心角的大小;
(3)先求出B类学生的人数占比,再乘以3000即可得.
【详解】
(1)这次调查共抽取的学生人数为(名)
故答案为:50;
(2)D类学生的人数为(名)
则D类学生的人数占比为
D类所对应的扇形圆心角大小为
条形统计图补全如下:
(3)B类学生的人数占比为
则(人)
答:该校B类学生约有1320人.
本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
本数(本)
频数(人数)
频率
5
0.2
6
18
0.36
7
14
8
8
0.16
合计
1
如皋八校联考2024-2025学年数学九年级第一学期开学联考试题【含答案】: 这是一份如皋八校联考2024-2025学年数学九年级第一学期开学联考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年云南省昆明市学校际合作学校数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年云南省昆明市学校际合作学校数学九年级第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年云南省昆明市石林县九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年云南省昆明市石林县九上数学开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。