新疆维吾尔自治区伊犁哈萨克自治州伊宁县2024年数学九年级第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四种标志图案中,既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
2、(4分)要使式子有意义,则的取值范围是( )
A.B.C.D.
3、(4分)如图,在▱ABCD中,AD=8,点E,F分别是AB,AC的中点,则EF等于( )
A.2B.3C.4D.5
4、(4分)如图,第一个图形中有4个“”,第二个图形中有7个“”,第三个图形中有11个“”,按照此规律下去,第8个图形中“”的个数为( ).
A.37B.46C.56D.67
5、(4分)八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示
如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )
A.甲B.乙C.丙D.丁
6、(4分)点(1,m),(2,n)都在函数y=﹣2x+1的图象上,则m、n的大小关系是( )
A.m=n B.m<n C.m>n D.不确定
7、(4分)不等式的解集在数轴上表示为( )
A.B.C.D.
8、(4分)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是( )
A.1B.﹣1C.0D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点A的坐标为,点B在直线上运动则线段AB的长度的最小值是___.
10、(4分)如图,在平行四边形中,已知,,,点在边上,若以为顶点的三角形是等腰三角形,则的长是_____.
11、(4分)若一个正多边形的每一个外角都是,则这个正多边形的边数为__________.
12、(4分)若反比例函数图象经过点A (﹣6,﹣3),则该反比例函数表达式是________.
13、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,点是正方形的中心,点是边上一动点,在上截取,连结,.初步探究:在点的运动过程中:
(1)猜想线段与的关系,并说明理由.
深入探究:
(2)如图2,连结,过点作的垂线交于点.交的延长线于点.延长交的延长线于点.
①直接写出的度数.
②若,请探究的值是否为定值,若是,请求出其值;反之,请说明理由
15、(8分)如图,在平面直角坐标系中,点A的坐标为(﹣6,0),点B在y轴正半轴上,∠ABO=30°,动点D从点A出发沿着射线AB方向以每秒3个单位的速度运动,过点D作DE⊥y轴,交y轴于点E,同时,动点F从定点C (1,0)出发沿x轴正方向以每秒1个单位的速度运动,连结DO,EF,设运动时间为t秒.
(1)当点D运动到线段AB的中点时.
①t的值为 ;
②判断四边形DOFE是否是平行四边形,请说明理由.
(2)点D在运动过程中,若以点D,O,F,E为顶点的四边形是矩形,求出满足条件的t的值.
16、(8分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
17、(10分)先化简(-m-2)÷,然后从-2<m≤2中选一个合适的整数作为m的值代入求值.
18、(10分)计算:
(1).
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______
20、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.
21、(4分)已知函数y=(m﹣1)x|m|+3是一次函数,则m=_____.
22、(4分)已知点P(-2,1),则点P关于x轴对称的点的坐标是__.
23、(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知直线l:y=﹣x+b与x轴,y轴的交点分别为A,B,直线l1:y=x+1与y轴交于点C,直线l与直线ll的交点为E,且点E的横坐标为1.
(1)求实数b的值和点A的坐标;
(1)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线l与直线ll于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.
25、(10分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且,连接BE,求证:.
26、(12分)计算:9-7+5.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据轴对称图形和中心对称图形的意义逐个分析即可.
【详解】
解:A、不是轴对称图形,是中心对称图形;
B、是轴对称图形,是中心对称图形;
C、不是轴对称图形,是中心对称图形;
D、不是轴对称图形,不是中心对称图形.
故选B.
考核知识点:理解轴对称图形和中心对称图形的定义.
2、D
【解析】
根据二次根式被开方数必须是非负数的条件,要使在有意义,必须.
故选D.
3、C
【解析】
利用平行四边形性质得到BC长度,然后再利用中位线定理得到EF
【详解】
在▱ABCD中,AD=8,得到BC=8,因为点E,F分别是AB,AC的中点,所以EF为△ABC的中位线,EF=,故选C
本题主要考查平行四边形性质与三角形中位线定理,属于简单题
4、B
【解析】
设第n个图形有an个“•”(n为正整数),观察图形,根据给定图形中“•”个数的变化可找出变化规律“an=+1(n为正整数)”,再代入n=8即可得出结论.
【详解】
设第n个图形有an个“•”(n为正整数).
观察图形,可知:a1=1+2+1=4,a2=1+2+3+1=7,a3=1+2+3+4+1=11,a4=1+2+3+4+5+1=16,…,
∴an=1+2+…+n+(n+1)+1=+1(n为正整数),
∴a8=+1=1.
故选:B.
考查了规律型:图形的变化类,根据各图形中“•”个数的变化找出变化规律“an=+1(n为正整数)”是解题的关键.
5、B
【解析】
根据平均数和方差的意义解答.
【详解】
解:从平均数看,成绩最好的是乙、丙同学,
从方差看,乙方差小,发挥最稳定,
所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选乙,
故选:B.
本题考查平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6、C
【解析】
一次函数y=kx+b(k≠0)的性质,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,根据此性质进行求解即可得.
【详解】
∵函数y=-2x+1中,k=-1<0,
∴y随x的增大而减小,
又∵1<2,
∴m>n,
故选C.
本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
7、A
【解析】
先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.
【详解】
解不等式得:x⩽3,
所以在数轴上表示为
故选A.
本题考查在数轴上表示不等式的解集,解题的关键是掌握在数轴上表示不等式的解集.
8、B
【解析】
解:根据题意得:(m﹣1)+1+1=0,
解得:m=﹣1.
故选B
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
当线段AB最短时,直线AB与直线垂直,根据勾股定理求得AB的最短长度.
【详解】
解:当线段AB最短时,直线AB与直线垂直,
过点A作直线l,
因为直线是一、三象限的角平分线,
所以,
所以,
所以,
,即,
所以.
故答案是:.
考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,熟知垂线段最短是解题的关键.
10、2或或
【解析】
分AB=BP,AB=AP,BP=AP三种情况进行讨论,即可算出BP的长度有三个.
【详解】
解:根据以为顶点的三角形是等腰三角形,可分三种情况
①若AB=BP
∵AB=2
∴BP=2
②若AB=AP
过A点作AE⊥BC交BC于E,
∵AB=AP,AE⊥BC
∴BE=EP
在Rt△ABE中
∵
∴AE=BE
根据勾股定理
AE2+BE2=AB2
即2BE2=4
解得BE=
∴BP=
③若BP=AP,则
过P点作PF⊥AB
∵AP=BP,PF⊥AB
∴BF=AB=1
在Rt△BFP中
∵
∴PF=BF=1
根据勾股定理
BP2=BF2+PF2
即BP2=1+1=2,
解得BP=
∵2,,都小于3
故BP=2或BP=或BP=.
本题主要考查了等腰三角形的性质和判定以及勾股定理,能利用分类讨论思想分三类情况进行讨论是解决本题的关键.BC=3在本题中的作用是BP的长度不能超过3,超过3的答案就要排除.
11、1
【解析】
根据正多边形的每一个外角都相等以及多边形的外角和为360°,多边形的边数=360°÷30°,计算即可求解.
【详解】
解:这个正多边形的边数:360°÷30°=1,
故答案为:1.
本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.
12、y=18/x
【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0)即可求得k的值.
【详解】
设反比例函数的解析式为y=(k≠0),函数经过点A(-6,-3),
∴-3=,得k=18,
∴反比例函数解析式为y=.
故答案为:y=.
此题比较简单,考查的是用待定系数法求反比例函数的解析式.
13、0,2
【解析】
求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
【详解】
解:移项得,﹣2x﹣3x>﹣6﹣4,
合并同类项得,﹣5x>﹣20,
系数化为2得,x<2.
故其非负整数解为:0,2.
本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
三、解答题(本大题共5个小题,共48分)
14、(1)EO⊥FO,EO=FO;理由见解析;(2)①;②=2
【解析】
(1)由正方形的性质可得BO=CO,∠ABO=∠ACB=45°,∠BOC=90°,由“SAS”可证△BEO≌△CFO,可得OE=OF,∠BOE=∠COF,可证EO⊥FO;
(2)①由等腰直角三角形的性质可得∠EOG的度数;
②由∠EOF=∠ABF=90°,可得点E,点O,点F,点B四点共圆,可得∠EOB=∠BFE,通过证明△BOH∽△BIO,可得,即可得结论.
【详解】
解:(1)OE=OF,OE⊥OF,连接AC,BD,
∵点O是正方形ABCD的中心
∴点O是AC,BD的交点
∴BO=CO,∠ABO=∠ACB=45°,∠BOC=90°
∵CF=BE,∠ABO=∠ACB,BO=CO,
∴△BEO≌△CFO(SAS)
∴OE=OF,∠BOE=∠COF
∵∠COF+∠BOF=90°,
∴∠BOE+∠BOF=90°
∴∠EOF=90°,
∴EO⊥FO.
(2)
①∵OE=OF,OE⊥OF,
∴△EOF是等腰直角三角形,OG⊥EF
∴∠EOG=45°
②BH•BI的值是定值,
理由如下:
如图,连接DB,
∵AB=BC=CD=2
∴BD=2,
∴BO=
∵∠AOB=∠COB=45°,∠HBE=∠GBI=90°
∴∠HBO=∠IBO=135°
∵∠EOF=∠ABF=90°
∴点E,点O,点F,点B四点共圆
∴∠EOB=∠BFE,
∵EF⊥OI,AB⊥HF
∴∠BEF+∠BFE=90°,∠BEF+∠EIO=90°
∴∠BFE=∠BIO,
∴∠BOE=∠BIO,且∠HBO=∠IBO
∴△BOH∽△BIO
∴
∴BH•BI=BO2=2
本题相似综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,证明△BOH∽△BIO是本题的关键.
15、(1)①2s,②是平行四边形,见解析;(2)14秒
【解析】
(1)①由直角三角形的性质得出AB=2OA=12,由题意得出BD=AD=AB=6,列方程即可得出答案;
②求出OF=OC+CF=3,由三角形中位线定理DE=BD=3,得出DE=OF,即可得出四边形DOFE是平行四边形;
(2)要使以点D,O,F,E为顶点的四边形是矩形,则点D在射线AB上,求出BD=3t﹣12,由直角三角形的性质得出DE=BD=t﹣6,OF=1+t,得出方程,解方程即可.
【详解】
解:(1)如图1,
①∵点A的坐标为(﹣6,0),
∴OA=6,
Rt△ABO中,∠ABO=30°,
∴AB=2AO=12,
由题意得:AD=3t,
当点D运动到线段AB的中点时,3t=6,
∴t=2,
故答案为:2s;
②四边形DOFE是平行四边形,理由是:
∵DE⊥y轴,AO⊥y轴,
∴DE∥AO,
∵AD=BD,
∴BE=OE,
∴DE=AO=3,
∵动点F从定点C (1,0)出发沿x轴正方向以每秒1个单位的速度运动,且t=2,
∴OF=1+2=3=DE,
∴四边形DOFE是平行四边形;
(2)要使以点D,O,F,E为顶点的四边形是矩形,则点D在射线AB上,如图2所示:
∵AD=3t,AB=12,
∴BD=3t﹣12,
在Rt△BDE中,∠DBE=30°,
∴DE=BD=(3t﹣12)=t﹣6,OF=1+t,
则t﹣6=1+t,
解得:t=14,
即以点D,O,F,E为顶点的四边形是矩形时,t的值为14秒.
本题是四边形综合题目,考查了平行四边形的判定与性质、坐标与图形性质、矩形的性质、含30°角的直角三角形的性质等知识;本题难度适中,熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.
16、(1)D的长为10m;(1)当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.
【解析】
(1)设AB=xm,则BC=(100﹣1x)m,利用矩形的面积公式得到x(100﹣1x)=450,解方程求得x1=5,x1=45,然后计算100﹣1x后与10进行大小比较即可得到AD的长;(1)设AD=xm,利用矩形面积可得S= x(100﹣x),配方得到S=﹣(x﹣50)1+1150,根据a的取值范围和二次函数的性质分类讨论:当a≥50时,根据二次函数的性质得S的最大值为1150;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a
【详解】
(1)设AB=xm,则BC=(100﹣1x)m,
根据题意得x(100﹣1x)=450,解得x1=5,x1=45,
当x=5时,100﹣1x=90>10,不合题意舍去;
当x=45时,100﹣1x=10,
答:AD的长为10m;
(1)设AD=xm,
∴S=x(100﹣x)=﹣(x﹣50)1+1150,
当a≥50时,则x=50时,S的最大值为1150;
当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a1,
综上所述,当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.
本题考查了一元二次方程及二次函数的应用.解决第(1)问时,要注意根据二次函数的性质并结合a的取值范围进行分类讨论,这也是本题的难点.
17、,.
【解析】
根据分式的减法和除法可以化简题目中的式子,然后在中选一个使得原分式有意义的整数作为m的值代入化简后的式子即可解答本题.
【详解】
分式的分母不能为0
解得
因此,从中选,代入得:原式.(答案不唯一)
本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
18、 (1)3-2+2;(2)2.
【解析】
(1)先算负整数指数幂,0次幂,绝对值,化简二次根式,再进一步合并即可;
(2)利用二次根式混合运算顺序,把二次根式化简,先算乘除再算加减.
【详解】
(1)解:原式=4-1-2+2
=3-2+2.
(2)解:原式=2+1-3+2
=2.
此题考查实数和二次根式的混合运算,掌握运算顺序与化简的方法是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0
根据一次函数的定义即可解答.
【详解】
解:已知已知直线y=(k﹣2)x+k经过第一、二、四象限,
故,
即0
20、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.
【详解】
解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴CD=BD,
∵BC=BD,
∴CD=BC=BD,
∴△BCD是等边三角形,
∴∠B=60°,
∴∠A=1°.
故答案为:1.
考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.
21、﹣1
【解析】
因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.
【详解】
解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
则得到|m|=1,m=±1,
∵m﹣1≠0,
∴m≠1,m=﹣1.
故答案是:m=﹣1.
考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
22、 (-2,-1)
【解析】
根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.
【详解】
点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),
故答案是:(﹣2,﹣1).
考查了关于x轴对称的对称点,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.
23、x<1
【解析】
解:∵y=kx+b,kx+b<0,∴y<0,由图象可知:x<1.故答案为x<1.
二、解答题(本大题共3个小题,共30分)
24、(3)b=2,A(6,0);(3) a的值为5或﹣3
【解析】
(3)将点E的横坐标为3代入y=x+3求出点E的坐标,再代入y=﹣x+b中可求出b的值,然后令﹣x+b=0解之即可得出A点坐标;
(3)由题可知,MN//OB,只需再求出当MN=OB时的a值,即可得出答案.
【详解】
(3)∵点E在直线l3上,且点E的横坐标为3,
∴点E的坐标为(3,3),
∵点E在直线l上,
∴,
解得:b=2,
∴直线l的解析式为,
当y=0时,有,
解得:x=6,
∴点A的坐标为(6,0);
(3)如图所示,
当x=a时,,,
∴,
当x=0时,yB=2,
∴BO=2.
∵BO∥MN,
∴当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,
此时|3﹣a |=2,
解得:a=5或a=﹣3.
∴当以点B、O、M、N为顶点的四边形为平行四边形,a的值为5或﹣3.
本题是一次函数综合题.考查了一次函数图象点的坐标特征、待定系数法、平行四边形的判定等知识.用含a的式子表示出MN的长是解题的关键.
25、证明见解析
【解析】
由平行四边形性质得,,,又证≌,可得,.
【详解】
证明:
四边形ABCD是平行四边形,
,,
,
,
,
,
在和中,
,
≌,
.
本题考核知识点:平行四边形性质,全等三角形. 解题关键点:由全等三角形性质得到线段相等.
26、15
【解析】
先化简再计算,,,代入原式即可得出结果;
【详解】
解:原式,
.
本题主要考查了二次根式的加减运算,无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
平均数
85
93
93
86
方差
3
3
3.5
3.7
新疆维吾尔自治区伊犁哈萨克自治州伊宁县2023-2024学年七年级上学期期中数学试题(含解析): 这是一份新疆维吾尔自治区伊犁哈萨克自治州伊宁县2023-2024学年七年级上学期期中数学试题(含解析),共11页。试卷主要包含了精心选一选.,细心填一填.,专心解一解.等内容,欢迎下载使用。
新疆维吾尔自治区 伊犁哈萨克自治州 伊宁县2023-2024学年 上学期七年级数学 期中试题: 这是一份新疆维吾尔自治区 伊犁哈萨克自治州 伊宁县2023-2024学年 上学期七年级数学 期中试题,共2页。
新疆维吾尔自治区伊犁哈萨克自治州伊宁县2023-2024学年八年级上学期11月期中数学试题: 这是一份新疆维吾尔自治区伊犁哈萨克自治州伊宁县2023-2024学年八年级上学期11月期中数学试题,共11页。