![西藏林芝地区名校2025届数学九上开学联考试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16294486/0-1729953498352/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![西藏林芝地区名校2025届数学九上开学联考试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16294486/0-1729953498409/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![西藏林芝地区名校2025届数学九上开学联考试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16294486/0-1729953498434/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
西藏林芝地区名校2025届数学九上开学联考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,在正方形ABCD中,点E,F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是( )
A.BE=AFB.∠DAF=∠BEC
C.∠AFB+∠BEC=90°D.AG⊥BE
2、(4分)某校八年级(2)班第一组女生的体重(单位:):35,36,36,42,42,42,45,则这组数据的众数为( )
A.45B.42C.36D.35
3、(4分)只用一种多边形不能镶嵌整个平面的是( )
A.正三角形B.正四边形C.正五边形D.正六边形
4、(4分)已知是整数,则正整数n的最小值是( )
A.4B.6C.8D.12
5、(4分)下列命题的逆命题不成立的是( )
A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等
C.平行四边形的对角线互相平分D.全等三角形的对应边相等
6、(4分)下列曲线中不能表示是的函数的是
A.B.
C.D.
7、(4分)如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0
8、(4分)如图,已知正方形 ABCD 的边长为 10,E 在 BC 边上运动,取 DE 的中点 G,EG 绕点 E 顺时针旋转90°得 EF,问 CE 长为多少时,A、C、F 三点在一条直线上( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.
10、(4分)若二次根式在实数范围内有意义,则x的取值范围是_____.
11、(4分)某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.
12、(4分)如图,小芳作出了边长为1的第1个正△A1B1C1.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2;用同样的方法,作出了第3个正△A3B3C3,……,由此可得,第个正△AnBnCn的边长是___________.
13、(4分)如图,在中,,,将绕点顺时针旋转,点、旋转后的对应点分别是点和,连接,则的度数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知函数,
(1)当m取何值时抛物线开口向上?
(2)当m为何值时函数图像与x轴有两个交点?
(3)当m为何值时函数图像与x轴只有一个交点?
15、(8分)已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-<0的解集(直接写出答案).
16、(8分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:
(1)频数分布表中的 ;
(2)将上面的频数分布直方图补充完整;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有 人.
17、(10分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.
(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;
(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;
(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)
18、(10分)如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A(15,0),B两点,正比例函数y=x的图象l2与l1交于点C(m,3).
(1)求m的值及l1所对应的一次函数表达式;
(2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,∠A=70º,E,F分别是边AB和BC的中点,EP⊥CD于P,则∠FPC的度数为___________.
20、(4分)关于 x 的方程 x2+5x+m=0 的一个根为﹣2,则另一个根是________ .
21、(4分)若,则分式_______.
22、(4分)已知方程的一个根为,则常数__________.
23、(4分)如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)分解因式和利用分解因式计算
(1)(a2+1)2-4a2
(2)已知x+y=1.2,x+3y=1,求3x2+12xy+12y2的值。
25、(10分)先化简,再求值:,其中x=﹣2+.
26、(12分)已知:如图,是的中线,是线段的中点,.
求证:四边形是等腰梯形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
∵ABCD是正方形,
∴∠ABF=∠C=90°,AB=BC.
∵BF=CE,∴△ABF≌△BCE.
∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,
∴∠DAF=∠BEC(第二个正确).
∵∠BAF=∠CBE,∠BAF+∠AFB=90°.
∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).
所以不正确的是C,故选C.
2、B
【解析】
出现次数最多的数是1.故众数是1.
【详解】
解:出现次数最多的数是1.故众数是1.
故答案:B
注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.
3、C
【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.
【详解】
解:A、正三角形的每个内角是60°,能整除360°,能镶嵌整个平面;
B、正四边形的每个内角是90°,能整除360°,能镶嵌整个平面;
C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能镶嵌整个平面;
D、正六边形的每个内角是120°,能整除360°,能镶嵌整个平面.
故选:C.
本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
4、B
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵且,且是整数,
∴是整数,即1n是完全平方数,
∴n的最小正整数值为1.
故选B.
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
5、B
【解析】
把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;
选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;
选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;
选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;
故选B.
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
6、D
【解析】
根据函数的定义即可判断.
【详解】
因为是的函数时,只能一个x对应一个y值,故D错误.
此题主要考查函数的定义,解题的关键是熟知函数图像的性质.
7、B
【解析】
试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.
解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,
显然,这些点在点A与点B之间.
故选B.
8、C
【解析】
过F作BC的垂线,交BC延长线于N点,连接AF.只要证明Rt△FNE∽Rt△ECD,利用相似比2:1解决问题.再证明△CNF是等腰直角三角形即可解决问题.
【详解】
过F作BC的垂线,交BC延长线于N点,连接AF.
∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,
∴∠DEC=∠EFN,
∴Rt△FNE∽Rt△ECD,
∵DE的中点G,EG绕E顺时针旋转90°得EF,
∴两三角形相似比为1:2,
∴可以得到CE=2NF,NE=CD=5.
∵AC平分正方形直角,
∴∠NFC=45°,
∴△CNF是等腰直角三角形,
∴CN=NF,
∴CE=NE=5=,
故选C.
本题考查正方形的性质和旋转的性质,解题的关键是掌握正方形的性质和旋转的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、65°.
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=(180°-50°)=65°,
∴∠ECB=130°-65°=65°.
故答案为65°.
10、x>2019
【解析】
根据二次根式的定义进行解答.
【详解】
在实数范围内有意义,即x-2019 0,所以x的取值范围是x 2019.
本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.
11、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
.
故答案为:.
本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
12、
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半,分别求出各三角形的边长,再根据等边三角形的边长的变换规律求解即可.
【详解】
解:由题意得,△A2B2C2的边长为
△A3B3C3的边长为
△A4B4C4的边长为
…,
∴△AnBnCn的边长为
故答案为:
本题考查了三角形中位线定理,三角形的中位线平行于第三边并且等于第三边的一半,根据规律求出第n个等边三角形的边长是解题的关键.
13、35°
【解析】
由旋转的性质可得AB=AD,∠BAD=70°,由等腰三角形的性质和直角三角形的性质可求解.
【详解】
∵将△ABC绕点A顺时针旋转70°,
∴AB=AD,∠BAD=70°, ∠AED=90°
∴∠ABD=55°
∵∠BED=∠AED =90°
∴∠BDE=35°
故答案为35°
本题考查了旋转的性质,等腰三角形的性质和直角三角形的性质,熟练运用旋转的性质是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)且;(3)或
【解析】
(1)开口方向向上,即m-1>0,然后求解即可;
(2)当与x轴有两个交点,即对应的一元二次方程的判别式大于零;
(3)当与x轴有一个交点,即对应的一元二次方程的判别式等于零或者本身就是一次函数.
【详解】
解:(1)∵,
∴.
(2)且,
,
∴且.
(3)或,
∴或.
本题考查了二次函数和一元二次方程的关系,特别是与x轴交点的个数与方程的判别式的关系是解答本题的关键.
15、 (1)反比例函数关系式:;一次函数关系式:y=1x+1;(1) 3;(3)x<-1或0
分析:(1)由B点在反比例函数y=上,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;
(1)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;
(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.
详解:(1)∵B(1,4)在反比例函数y=上,
∴m=4,
又∵A(n,-1)在反比例函数y=的图象上,
∴n=-1,
又∵A(-1,-1),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,
k=1,b=1,
∴y=,y=1x+1;
(1)过点A作AD⊥CD,
∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,
A(-1,-1),B(1,4),C(0,1),
∴AD=1,CO=1,
∴△AOC的面积为:S=AD•CO=×1×1=1;
(3)由图象知:当0<x<1和-1<x<0时函数y=的图象在一次函数y=kx+b图象的上方,
∴不等式kx+b-<0的解集为:0<x<1或x<-1.
点睛:此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.
16、(1)14;(2)补图见解析;(3)1.
【解析】
(1)根据第1组频数及其频率求得总人数,总人数乘以第2组频率可得a的值;
(2)把上面的频数分布直方图补充完整;
(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.
【详解】
(1)∵被调查的总人数为6÷0.12=50人,
∴a=50×0.28=14,
故答案为:14;
(2)补全频数分布直方图如下:
(3)估计该校进入决赛的学生大约有1000×0.08=1人,
故答案为:1.
此题考查了用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.
17、(1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;(1)AE⊥DF,详见解析;(3)详见解析
【解析】
(1)根据正方形的性质得到相关的条件找出全等的三角形:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;
(1)利用正方形的性质证明△ADE≌△BCE,再利用全等的关系求出∠AHD=90°,得到AE⊥DF;
(3)利用(1)中结论,及正方形的性质证明△DCM≌△BCE,得到CE=CM,结合点E为DC的中点即可证明点M为BC的中点.
【详解】
解:(1)∵四边形ABCD是正方形,
∴AB=AD=BC=DC,∠DAC=∠BAC=∠DCA=∠BCA=23°,
又∵AF=AF,
∴△ADF≌△ABF,
∵AC=AC,
∴△ADC≌△ABC,
∵CF=CF,
∴△CDF≌△CBF,
∴全等的三角形有:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.
(1)AE⊥DF.
证明:设AE与DF相交于点H.
∵四边形ABCD是正方形,
∴AD=AB,∠DAF=∠BAF.
又∵AF=AF,
∴△ADF≌△ABF.
∴∠1=∠1.
又∵AD=BC,∠ADE=∠BCE=90°,DE=CE,
∴△ADE≌△BCE.
∴∠3=∠2.
∵∠1+∠2=90°,
∴∠1+∠3=90°,
∴∠AHD=90°.
∴AE⊥DF.
(3)如图,∵∠ADE=90°,AE⊥DF.
∴∠1+∠3=90°,∠3+∠1=90°.
∴∠3=∠3,
∵∠3=∠2,
∴∠2=∠3.
∵DC=BC,∠DCM=∠BCE=90°,
∴△DCM≌△BCE.
∴CE=CM,
又∵E为CD中点,且CD=CB,
∴CE=CD=BC,
∴CM=CB,即M为BC中点,
∴BM=MC.
主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
18、(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
【解析】
(1)先求得点C的坐标,再运用待定系数法即可得到l1的解析式;
(2)根据函数图象,结合C点的坐标即可求得.
【详解】
解:(1)把C(m,3)代入正比例函数y=x,可得3=m,
解得m=1,
∴C(1,3),
∵一次函数y=kx+b的图象l1分别过A(15,0),C(1,3),
∴ 解得,
∴l1的解析式为y=-x+5;
(2)由图象可知:第一象限内,一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围是0<x<1.
故答案为(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
本题考查两条直线相交或平行问题,关键是掌握待定系数法求函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、35°
【解析】
根据菱形的邻角互补求出∠B,再求出BE=BF,然后根据等腰三角形两底角相等求出∠BEF,再求出∠FEP,取AD的中点G,连接FG交EP于O,然后判断出FG垂直平分EP,再根据线段垂直平分线上的点到两端点的距离相等可得EF=FP,利用等边对等角求出∠FPE,再根据∠FPC=90°-∠FPE代入数据计算即可得解.
【详解】
在菱形ABCD中,连接EF,如图,
∵∠A=70°,
∴∠B=180°-870°=110°,
∵E,F分别是边AB,BC的中点,
∴BE=BF,
∴∠BEF=(180°-∠B)=(180°-110°)=35°,
∵EP⊥CD,AB∥CD,
∴∠BEP=∠CPE=90°,
∴∠FEP=90°-35°=55°,
取AD的中点G,连接FG交EP于O,
∵点F是BC的中点,G为AD的中点,
∴FG∥DC,
∵EP⊥CD,
∴FG垂直平分EP,
∴EF=PF,
∴∠FPE=∠FEP=55°,
∴∠FPC=90°-∠FPE=90°-55°=35°.
故答案为:35°.
本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记性质并作出辅助线求出EF=PF是解题的关键,也是本题的难点.
20、
【解析】
解:设方程的另一个根为n,
则有−2+n=−5,
解得:n=−3.
故答案为
本题考查一元二次方程的两根是,则
21、
【解析】
先把化简得到,然后把分式化简,再把看作整体,代入即可.
【详解】
∵,化简可得:,
∵,
把代入,得:
原式=;
故答案为:.
本题考查了分式的化简求值,解题的关键是利用整体代入的思想进行解题.
22、
【解析】
将x=2代入方程,即可求出k的值.
【详解】
解:将x=2代入方程得:,解得k=.
本题考查了一元二次方程的解,理解方程的解是方程成立的未知数的值是解答本题的关键
23、
【解析】
连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.
【详解】
连接BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴
∴
则
∵FE=BE=EC,
∴
∴
故答案为
考查翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置不变,对应边和对应角相等是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)1.18
【解析】
(1)原式利用平方差公式及完全平方公式分解即可;
(2)原式提取公因式,将已知等式代入计算即可求出值.
【详解】
解:(1)原式=(a2+ 1+ 2a)(a2+1-2a)
= (a+1)2(a+1)2
(2)∵ x + y = 1.2 ,x + 3y = 1
∴ 2 x + 4 y = 1.2
∴ x + 2 y = 1.6
∴原式= 3(x2+4xy+4y2)
=3 (x+2y)2
=3 ×1.6×1.6
=1.18
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
25、,
【解析】
原式括号中两项通分并利用同分母分式的加减法则计算,再把除法转化成乘法约分即可得到结果.
【详解】
解:原式=÷
=÷
=×
=
=﹣,
当x=﹣2+时,
原式=﹣=﹣=﹣.
26、见解析.
【解析】
先证明△ADE≌△MDC得出AE=MC,证出AE=MB,得出四边形AEBM是平行四边形,证出BE=AC,而AE∥BC,BE与AC不平行,即可得出结论.
【详解】
证明:∵
∴.
∵,
∴.
∴.
∵,
∴.
∴四边形是平行四边形.
∴.
而,
∴.
∵,与不平行,
∴四边形是梯形.
∴梯形是等腰梯形.
本题考查了等腰梯形的判定、平行四边形的判定、全等三角形的判定与性质;熟练掌握等腰梯形的判定,证明三角形全等是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
分组/分
频数
频率
50≤x<60
6
0.12
60≤x<70
0.28
70≤x<80
16
0.32
80≤x<90
10
0.20
90≤x≤100
4
0.08
西藏拉萨北京实验中学2025届数学九上开学经典试题【含答案】: 这是一份西藏拉萨北京实验中学2025届数学九上开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省本溪市名校2024年九上数学开学联考模拟试题【含答案】: 这是一份辽宁省本溪市名校2024年九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届西藏拉萨达孜县九上数学开学统考模拟试题【含答案】: 这是一份2025届西藏拉萨达孜县九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。