搜索
    上传资料 赚现金
    英语朗读宝

    四川省南充市名校2024年九年级数学第一学期开学经典模拟试题【含答案】

    四川省南充市名校2024年九年级数学第一学期开学经典模拟试题【含答案】第1页
    四川省南充市名校2024年九年级数学第一学期开学经典模拟试题【含答案】第2页
    四川省南充市名校2024年九年级数学第一学期开学经典模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省南充市名校2024年九年级数学第一学期开学经典模拟试题【含答案】

    展开

    这是一份四川省南充市名校2024年九年级数学第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是( )
    A.B.
    C.D.
    2、(4分)函数的自变量x的取值范围是( )
    A.B.
    C.且D.或
    3、(4分)下列变形正确的是( )
    A.B.C.D.
    4、(4分)计算()3÷的结果是( )
    A.B.y2C.y4D.x2y2
    5、(4分)下列四组线段中,可以构成直角三角形的是( )
    A.1,2,3B.4,5,6C.9,12,15D.
    6、(4分)已知将直线y=x+1向下平移3个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )
    A.经过第一、二、四象限B.与x轴交于(2,0)
    C.与直线y=2x+1平行D.y随的增大而减小
    7、(4分)若关于x的不等式组的解集为x<2,则a的取值范围是( )
    A.a≥﹣2B.a>﹣2C.a≤﹣2D.a<﹣2
    8、(4分)如图,在四边形中,与相交于点,,那么下列条件中不能判定四边形是菱形的为( )
    A.∠OAB=∠OBAB.∠OBA=∠OBCC.AD∥BCD.AD=BC
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系中,直线y=x-1与矩形OABC的边BC、OC分别交于点E、F,已知OA=3,OC=4,则的面积是_________.
    10、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
    11、(4分)周末,小李从家里出发骑车到少年宫学习绘画,学完后立即回家,他离家的距离y(km)与时间x(h)之间的函数关系如图所示,有下列结论:①他家离少年宫30km;②他在少年宫一共停留了3h;③他返回家时,离家的距离y(km)与时间x(h)之间的函数表达式是y=-20x+110;④当他离家的距离y=10时,时间x=.其中正确的是________(填序号).
    12、(4分)若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA=_____cm时,四边形ABCD是平行四边形.
    13、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为和两部分,则该平行四边形的周长为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解关于x的方程:
    15、(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.
    (1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由.
    (2)在(1)的条件下,当∠A=__________°时,四边形BECD是正方形.
    16、(8分)利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).
    (1)先作出该四边形关于直线成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90后的图形;
    (2)完成上述设计后,整个图案的面积等于_________.
    17、(10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.
    (1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;
    (2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.
    ①若该养老中心建成后可提供养老床位200个,求t的值;
    ②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?
    18、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数y=x的图象交于点C(m,4)
    (1)求m的值及一次函数y=kx+b的表达式;
    (2)观察函数图象,直接写出关于x的不等式x≤kx+b的解集;
    (3)若P是y轴上一点,且△PBC的面积是8,直接写出点P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.
    20、(4分)如图,已知一次函数与一次函数的图像相交于点P(-2,1),则关于不等式x+b≥mx-n的解集为_____.
    21、(4分)将一次函数y=﹣2x﹣1的图象向上平移3个单位,则平移后所得图象的解析式是_____.
    22、(4分)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.
    23、(4分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC; ②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.
    (1)求证:BD、EF互相平分;
    (2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.
    25、(10分)初中生的视力状况受到社会的广泛关注,某市有关部门对全市3万名初中生的视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图,根据图中所提供的信息回答下列问题:
    (1)本次调查共抽测了多少名学生?
    (2)在这个问题中的样本指什么?
    (3)如果视力在4.9-5.1(含4.9和5.1)均属正常,那么全市有多少名初中生视力正常?
    26、(12分)如图,港口位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一个固定方向航行,甲船沿西南方向以每小时12海里的速度航行,乙船沿东南方向以每小时16海里的速度航行,它们离开港口5小时后分别位于、两处,求此时之间的距离.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    设读前一半时,平均每天读x页,等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可.
    【详解】
    解:设读前一半时,平均每天读x页,则读前一半用的时间为:,读后一半用的时间为:.
    由题意得,+=14,
    故选:C.
    本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.
    2、A
    【解析】
    要使函数有意义,

    所以,
    故选A.
    考点:函数自变量的取值范围.
    3、C
    【解析】
    依据分式的基本性质进行判断,即可得到结论.
    【详解】
    解:A. ,故本选项错误;
    B. ,故本选项错误;
    C. ,故本选项正确;
    D. ,故本选项错误;
    故选:C.
    本题考查分式的基本性质,分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
    4、B
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    解:原式=

    = ,
    故选:B.
    此题考查分式的运算及幂的运算,难度一般.
    5、C
    【解析】
    根据勾股定理的逆定理,看较小两条边的平方和是否等于最长边的平方即可判断.
    【详解】
    A、12+22≠32,不能构成直角三角形,故不符合题意;
    B、42+52≠62,不能构成直角三角形,故不符合题意;
    C、92+122=152,能构成直角三角形,故符合题意;
    D、,不能构成直角三角形,故不符合题意,
    故选C.
    本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
    6、B
    【解析】
    利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
    【详解】
    将直线y=x+1向下平移3个单位长度后得到直线y=x+1-3=x-2,
    A、直线y=x-2经过第一、三、四象限,故本选项错误;
    B、直线y=x-2与x轴交于(2,0),故本选项正确;
    C、直线y=x-2与直线y=2x+1相交,故本选项错误;
    D、直线y=x-2,y随x的增大而增大,故本选项错误;
    故选:B.
    考查了一次函数图象与几何变换,正确把握变换规律是解题关键.
    7、C
    【解析】
    分别求出每个不等式的解集,根据不等式组的解集为x<2可得关于a的不等式,解之可得.
    【详解】
    解不等式,得:x<2,
    解不等式<x,得:x<﹣a,
    ∵不等式组的解集为x<2,
    ∴﹣a≥2,
    解得:a≤﹣2,
    故选:C.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    8、A
    【解析】
    根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.
    【详解】
    A.∵AC⊥BD,BO=DO,
    ∴AC是BD的垂直平分线,
    ∴AB=AD,CD=BC,
    ∴∠ABD=∠ADB,∠CBD=∠CDB,
    ∵∠OAB=∠OBA,
    ∴∠OAB=∠OBA=45°,
    ∵OC与OA的关系不确定,
    ∴无法证明四边形ABCD的形状,故此选项正确;
    B. ∵AC⊥BD,BO=DO,
    ∴AC是BD的垂直平分线,
    ∴AB=AD,CD=BC,
    ∴∠ABD=∠ADA,∠CBD=∠CDB,
    ∵∠OBA=∠OBC,
    ∴∠ABD=∠ADB=∠CBD=∠CDB,
    BD=BD,
    ∴△ABD≌△CBD,
    ∴AB=BC=AD=CD,
    ∴四边形ABCD是菱形,故此选项错误;
    C. ∵AD∥BC,
    ∴∠DAC=∠ACB,
    ∵∠AOD=∠BOC,BO=DO,
    ∴△AOD≌△BOC,
    ∴AB=BC=CD=AD,
    ∴四边形ABCD是菱形,故此选项错误;
    D. ∵AD=BC,BO=DO,
    ∠BOC=∠AOD=90°,
    ∴△AOD≌△BOC,
    ∴AB=BC=CD=AD,
    ∴四边形ABCD是菱形,故此选项错误.
    故选:A.
    此题考查菱形的判定,解题关键在于掌握菱形的三种判定方法.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    先根据直线的解析式求出点F的坐标,从而可得OF、CF的长,再根据矩形的性质、OC的长可得点E的横坐标,代入直线的解析式可得点E的纵坐标,从而可得CE的长,然后根据直角三角形的面积公式即可得.
    【详解】
    对于一次函数
    当时,,解得
    即点F的坐标为
    四边形OABC是矩形
    点E的横坐标为4
    当时,,即点E的坐标为
    则的面积是
    故答案为:.
    本题考查了一次函数的几何应用、矩形的性质等知识点,利用一次函数的解析式求出点E的坐标是解题关键.
    10、﹣1
    【解析】
    首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BG,AD=BC,
    ∴∠DAE=∠G=30°,
    ∵DE=EC,∠AED=∠GEC,
    ∴△ADE≌△GCE,
    ∴AE=EG=AD=CG=1,
    在Rt△BFG中,∵FG=BG•cs30°=,
    ∴EF=FG-EG=-1,
    故答案为-1.
    本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
    11、①②③
    【解析】
    分析:根据图象能够理解离家的距离随时间的变化情况进行判断即可.
    详解:①他家离少年宫=30km,正确;
    ②他在少年宫一共停留了4﹣1=3个小时,正确;
    ③他返回家时,y(km)与时间x(h)之间的函数表达式是y=﹣20x+110,正确;
    ④当他离家的距离y=10km时,时间x=5(h)或x==(h),错误.
    故答案为:①②③.
    点睛:本题考查了一次函数的应用,根据图象能够理解离家的距离随时间的变化情况,是解决本题的关键.
    12、1
    【解析】
    根据OB=OD,当OA=OC时,四边形ABCD是平行四边形,即可得出答案.
    【详解】
    由题意得:当OA=1时,OC=14﹣1=1=OA,
    ∵OB=OD,
    ∴四边形ABCD是平行四边形,
    故答案为:1.
    本题考查平行四边形的判定,解题关键是熟练掌握平行四边形的判定定理:对角线互相平分的四边形是平行四边形,难度一般.
    13、20cm或22cm.
    【解析】
    根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.
    【详解】
    如图:
    ∵ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠DAE=∠AEB,
    ∵AE为角平分线,
    ∴∠DAE=∠BAE,
    ∴∠AEB=∠BAE,
    ∴AB=BE,
    ∴①当BE=3cm,CE=4cm,AB=3cm,
    则周长为20cm;
    ②当BE=4cm时,CE=3cm,AB=4cm,
    则周长为22cm.
    本题考查平行四边形的性质,分类讨论是关键.
    三、解答题(本大题共5个小题,共48分)
    14、x=-5
    【解析】
    试题分析:方程左右两边同时乘以(x+1)(x-1),解出x以后要验证是否为方程的增根.
    试题解析:
    3(x+1)+2x(x-1)=2(x+1)(x-1)
    3x+3+2x2-2x=2x2-2
    x=-5.
    经检验x=-5为原方程的解.
    点睛:掌握分式方程的求解.
    15、 (1)菱形,理由见解析;(2)1.
    【解析】
    ①先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;
    ②当∠A=1°时,△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.
    【详解】
    解:(1)四边形BECD是菱形,理由如下:
    ∵D为AB中点,
    ∴AD=BD,
    ∵CE=AD,
    ∴BD=CE,
    ∵BD∥CE,
    ∴四边形BECD是平行四边形,
    ∵∠ACB=90°,D为AB中点,
    ∴CD=AB=BD,
    ∴四边形BECD是菱形;
    故答案为:菱形;
    (2)当∠A=1°时,四边形BECD是正方形;理由如下:
    ∵∠ACB=90°,
    当∠A=1°时,△ABC是等腰直角三角形,
    ∵D为AB的中点,
    ∴CD⊥AB,
    ∴∠CDB=90°,
    ∴四边形BECD是正方形;
    故答案为:1.
    本题是四边形综合题目,考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.
    16、(1)图见解析; (2)1
    【解析】
    (1)根据图形对称的性质先作出关于直线l的对称图形,再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形即可;
    (2)先利用割补法求出原图形的面积,由图形旋转及对称的性质可知经过旋转与轴对称所得图形与原图形全等即可得出结论.
    【详解】
    解:(1)作图如图所示:
    先作出关于直线l的对称图形;再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形.
    (2)∵边长为1的方格纸中一个方格的面积是1,
    ∴原图形的面积为5,
    ∴整个图案的面积=4×5=1.
    故答案为:1.
    点睛:本题考查的是利用旋转及轴对称设计图案,熟知经过旋转与轴对称所得图形与原图形全等是解答此题的关键.
    17、(1)20%;(2)①1;②该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.
    【解析】
    (1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①、设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②、设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.
    【详解】
    (1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,
    由题意可列出方程:2(1+x)2=2.88,
    解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
    答:该市这两年拥有的养老床位数的平均年增长率为20%.
    (2)①设规划建造单人间的房间数为t(10≤t≤30),
    则建造双人间的房间数为2t,三人间的房间数为100﹣3t,
    由题意得:t+4t+3(100﹣3t)=200, 解得:t=1.
    答:t的值是1.
    ②、设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),
    ∵k=﹣4<0, ∴y随t的增大而减小.
    当t=10时,y的最大值为300﹣4×10=260(个),
    当t=30时,y的最小值为300﹣4×30=180(个).
    答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.
    考点:(1)一次函数的应用;(2)一元一次方程的应用;(3)一元二次方程的应用.
    18、(1)y=x+2;(2)x≤3;(3)P 的坐标为(0,)或(0,﹣).
    【解析】
    (1)把点C(m,4)代入正比例函数y=x即可得到m的值,把点A和点C的坐标代入y=kx+b求得k,b的值即可;
    (2)根据图象解答即可写出关于x的不等式x≤kx+b的解集;
    (3)点C的坐标为(3,4),说明点C到y轴的距离为3,根据△BPC的面积为8,求得BP的长度,进而求出点P的坐标即可.
    【详解】
    (1)∵点C(m,4)在正比例函数的y=x图象上,
    ∴m=4,
    ∴m=3,
    即点C坐标为(3,4),
    ∵一次函数 y=kx+b经过A(﹣3,0)、点C(3,4)
    ∴,
    解得:,
    ∴一次函数的表达式为:y=x+2;
    (2)由图象可得不等式x≤kx+b的解为:x≤3;
    (3)把x=0代入y=x+2得:y=2,
    即点B的坐标为(0,2),
    ∵点P是y轴上一点,且△BPC的面积为8,
    ∴×BP×3=8,
    ∴PB=,
    又∵点B的坐标为(0,2),
    ∴PO=2+=,或PO=-+2=-,
    ∴点P 的坐标为(0,)或(0,﹣).
    本题考查了待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,分析图象并结合题意列出符合要求的等式是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
    故答案为.
    本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
    20、
    【解析】
    观察函数图象得到,当时,一次函数y1=x+b的图象都在一次函数y2=mx-n的图象的上方,由此得到不等式x+b>mx-n的解集.
    【详解】
    解:不等式x+b≥mx-n的解集为.
    故答案为.
    本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    21、y=﹣1x+1
    【解析】
    根据平移法则上加下减可得出解析式.
    【详解】
    由题意得:平移后的解析式为:y=﹣1x﹣1+3=﹣1x+1.
    故答案为:y=﹣1x+1.
    本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
    22、4cm
    【解析】
    根据平行四边形的性质可知AO=OC,OD=OB,据此求出AO、DO的长,利用勾股定理求出AD的长即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AO=OC,OD=OB,
    又∵AC=10cm,BD=6cm,
    ∴AO=5cm,DO=3cm,
    本题考查了平行四边形的性质、勾股定理,找到四边形中的三角形是解题的关键.
    23、①②③.
    【解析】
    ①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;
    【详解】
    ①∵四边形ABCD是正方形,
    ∴∠BAD=∠ADC=∠B=90°,
    ∴∠BAM+∠DAM=90°,
    ∵将△ABM绕点A旋转至△ADN,
    ∴∠NAD=∠BAM,∠AND=∠AMB,
    ∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,
    ∴∠DAM=∠AND,故①正确,
    ②∵将△MEF绕点F旋转至△NGF,
    ∴GN=ME,
    ∵AB=a,ME=a,
    ∴AB=ME=NG,
    在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,
    ∴△ABM≌△NGF;故②正确;
    ③∵将△ABM绕点A旋转至△ADN,
    ∴AM=AN,
    ∵将△MEF绕点F旋转至△NGF,
    ∴NF=MF,
    ∵△ABM≌△NGF,
    ∴AM=NF,
    ∴四边形AMFN是矩形,
    ∵∠BAM=∠NAD,
    ∴∠BAM+DAM=∠NAD+∠DAN=90°,
    ∴∠NAM=90°,
    ∴四边形AMFN是正方形,
    ∵在Rt△ABM中,a1+b1=AM1,
    ∴S四边形AMFN=AM1=a1+b1;故③正确
    故答案为①②③.
    本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)四边形DEBF的周长为12 ,面积是4
    【解析】
    分析:(1)证明EF、BD互相平分,只要证DEBF是平行四边形;利用两组对边分别平行来证明.
    (2)求四边形DEBF的周长,求出BE和DE即可.
    详解:(1)∵四边形ABCD是平行四边形
    ∴CD∥AB,CD=AB,AD=BC
    ∵DE、BF分别是∠ADC和∠ABC的角平分线
    ∴∠ADE=∠CDE,∠CBF=∠ABF
    ∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF
    ∴∠AED=∠ADE,∠CFB=∠CBF
    ∴AE=AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF 即BE=DF
    ∵DF∥BE,∴四边形DEBF是平行四边形
    ∵∠A=60°,AE=AD∴△ADE是等边三角形
    ∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2
    ∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12
    过D点作DG⊥AB于点G,
    在Rt△ADG中,AD=4,∠A=60°,
    ∴DG=ADcs∠A=4×=
    ∴四边形DEBF的面积=BE×DG=2×=4
    点睛:此题主要考查了平行四边形的性质与判定.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
    25、(1)共抽测了240名学生 (2)样本是240名学生的视力情况
    (3)
    【解析】
    解:(1)共抽测了学生人数:20+40+90+60+30=240(名)
    (2)易知题意为调查某市3万学生是哩情况所抽取学生视力情况样本,故样本是240名学生的视力情况
    (3)依题意知,视力在4.9-5.1(含4.9和5.1)均属正常,可从直方图判断一共有(60+30)人合格.故3万学生合格人数为:
    (名)
    考点:抽样调查
    点评:本题难度较低,主要考查学生对抽样调查及直方统计图知识点的掌握,正确读懂统计图数据位解题关键.
    26、100海里
    【解析】
    根据已知条件,先求出PA、PB的长,再利用勾股定理进行解答.
    【详解】
    解:如图,由已知得,AP=12×5=60海里,PB=16×5=80海里,
    在△APB中
    ∵∠APB=90°,
    由勾股定理得AP2+PB2=AB2,
    即602+802=AB2,
    AB= =100海里.
    答:此时A、B之间的距离相距100海里.
    本题考查了勾股定理的应用,解答此题要明确方位角东南,西南是指两坐标轴夹角的平分线.
    题号





    总分
    得分
    批阅人

    相关试卷

    福建省莆田市名校2025届九年级数学第一学期开学经典模拟试题【含答案】:

    这是一份福建省莆田市名校2025届九年级数学第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届四川省泸州市名校数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2025届四川省泸州市名校数学九年级第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年云南省普洱市名校数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024年云南省普洱市名校数学九年级第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map