![四川省眉山市仁寿县2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16292152/0-1729908641255/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省眉山市仁寿县2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16292152/0-1729908641308/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省眉山市仁寿县2024-2025学年九年级数学第一学期开学复习检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16292152/0-1729908641330/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川省眉山市仁寿县2024-2025学年九年级数学第一学期开学复习检测试题【含答案】
展开
这是一份四川省眉山市仁寿县2024-2025学年九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
A.20B.15C.10D.5
2、(4分)某市的夏天经常台风,给人们的出行带来很多不便,小明了解到去年8月16日的连续12个小时的风力变化情况,并画出了风力随时间变化的图象(如图),则下列说法正确的是( )
A.20时风力最小B.8时风力最小
C.在8时至12时,风力最大为7级D.8时至14时,风力不断增大
3、(4分)已知 A 和 B 都在同一条数轴上,点 A 表示 2 ,又知点 B 和点 A 相距 5 个单位长度,则点 B 表示的数一定是( )
A.3B. 7C.7 或 3D. 7 或 3
4、(4分)关于数据-4,1,2,-1,2,下面结果中,错误的是( )
A.中位数为1B.方差为26C.众数为2D.平均数为0
5、(4分)下列图形中,既是轴对称图图形又是中心对称图形的是( )
A.B.C.D.
6、(4分)下列图形中既是轴对称图形又是中心对称图形的是( )
A.等腰三角形B.平行四边形C.正五边形D.正十边形
7、(4分)化简的结果是( )
A.9B.3C.3D.2
8、(4分)若分式 有意义,则x的取值范围是
A.x>1B.x<1C.x≠1D.x≠0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)要使在实数范围内有意义,a 应当满足的条件是_____.
10、(4分)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=1.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…;以此类推,则第2019个三角形的周长是_____.
11、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.
12、(4分)某正比例函数图象经过点(1,2),则该函数图象的解析式为___________
13、(4分)已知点,,,在平面内找一点,使得以、、、为顶点的四边形为平行四边形,则点的坐标为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,直线与轴、轴分别相交于A、B两点,求AB的长及△OAB的面积.
15、(8分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:
(1)请你填写下表中甲班同学的相关数据.
(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?
(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).
16、(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
(1)画出关于轴对称的;
(2)画出将绕原点逆时针旋转90°所得的;
(3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
17、(10分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.
求证:(1)△BEG≌△DFH;
(2)四边形GEHF是平行四边形.
18、(10分)(1)计算:
(2)如图,E、F是矩形ABCD边BC上的两点,且AF=DE.求证:BE=CF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当_____时,分式的值为1.
20、(4分)如图,菱形的两个顶点坐标为,,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________.
21、(4分)在函数中,自变量的取值范围是________.
22、(4分)如图,中,,,,则__________.
23、(4分)如果点P(m+3,m+1)在x轴上,则点P的坐标为________
二、解答题(本大题共3个小题,共30分)
24、(8分)善于思考的小鑫同学,在一次数学活动中,将一副直角三角板如图放置,,,在同一直线上,且,,,,量得,求的长.
25、(10分)将沿直线平移到的位置,连接、.
(1)如图1,写出线段与的关系__________;
(2)如图1,求证:;
(3)如图2,当是边长为2的等边三角形时,以点为原点,所在的直线为轴建立平面直角坐标系.求出点的坐标,使得以、、、为顶点的四边形是平行四边形.
26、(12分)计算或化简:(1);(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B
2、A
【解析】
根据函数图象可以判断各个选项中的结论是否正确,本题得以解决.
【详解】
解:由图象可得,
20时风力最小,故选项A正确,选项B错误,
在8时至12时,风力最大为4级,故选项C错误,
8时至11时,风力不断增大,11至12时,风力在不断减小,在12至14时,风力不断增大,故选项D错误,
故选:A.
本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
3、D
【解析】
本题根据题意可知B的取值有两种,一种是在点A的左边,一种是在点A的右边.即|b﹣(﹣2)|=5,去绝对值即可得出答案.
【详解】
依题意得:数轴上与A相距5个单位的点有两个,右边的点为﹣2+5=3;左边的点为﹣2﹣5=﹣1.
故选D.
本题难度不大,但要注意分类讨论,不要漏解.
4、B
【解析】
A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;
B. , ,故不正确;
C.∵众数是2,故正确;
D.,故正确;
故选B.
5、D
【解析】
结合轴对称图形和中心对称图形的定义求解观察各个图形,即可完成解答.
【详解】
A、不是轴对称图形,是中心对称图形,故A错误;
B、是轴对称图形,但不是中心对称图形,故B错误;
C、既不是轴对称图形,也不是中心对称图形,故C正确;
D、既是轴对称图形又是中心对称图形,故D正确.
故选D.
本题考查图形对称性的判断, 中心对称图形满足绕着中心点旋转180°后能与自身重合,而若一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就是轴对称图形.
6、D
【解析】
根据轴对称图形和中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、是轴对称图形,不是中心对称图形.故错误;
D、是轴对称图形,也是中心对称图形.故正确.
故选:D.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、B
【解析】
先进行二次根式的化简,再进行二次根式的除法运算求解即可.
【详解】
解:
=1÷
=1.
故选:B.
本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则.
8、C
【解析】
分式分母不为0,所以,解得.
故选:C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、a⩽3.
【解析】
根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.
【详解】
∵在实数范围内有意义,
∴3−a⩾0,
解得a⩽3.
故答案为:a⩽3.
此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.
10、
【解析】
由三角形的中位线定理得:B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出结论.
【详解】
∵△A1B1C1中,A1B1=4,A1C1=5,B1C1=1,
∴△A1B1C1的周长是16,
∵A2,B2,C2分别是边B1C1,A1C1,A1B1的中点,
∴B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,
…,
以此类推,则△A4B4C4的周长是×16=2;
∴△AnBn∁n的周长是,
∴第2019个三角形的周长是=,
故答案为:.
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
11、1.
【解析】
根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.
【详解】
解:数据1出现了3次,次数最多,所以这组数据的众数是1.
故答案为:1.
众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.
12、
【解析】
设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.
【详解】
解:设正比例函数的解析式为y=kx,
把点(1,2)代入得,
2=k×1,
解得k=2,
∴该函数图象的解析式为:;
故答案为:.
本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.
13、,,
【解析】
根据题意画出图形,由平行四边形的性质两组对边分别平行且相等来确定点M的坐标.
【详解】
解:①当如图1时,
∵C(0,2),A(1,0),B(4,0),
∴AB=3,
∵四边形ABMC是平行四边形,
∴M(3,2);
②当如图2所示时,同①可知,M(-3,2);
③当如图3所示时,过点M作MD⊥x轴,
∵四边形ACBM是平行四边形,
∴BD=OA=1,MD=OC=2,
∴OD=4+1=5,
∴M(5,-2);
综上所述,点M坐标为(3,2)、(-3,2)、(5,-2).
本题考查了平行四边形的性质和判定,利用分类讨论思想是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、,1
【解析】
根据两点距离公式、三角形的面积公式求解即可.
【详解】
解:令y=0,
解得
令x=0,
解得
∴A、B两点坐标为(3,0)、(0,6)
∴
∴
故答案为:,1.
本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.
15、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).
【解析】
(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;
(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;
(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.
【详解】
解:(1)如下表:
(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人
∴乙组成绩更好一些
(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;
②从中位数看,甲班每分钟输入135字以上的人数比乙班多;
③从平均数看,两班同学输入的总字数一样,成绩相当;
④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;
⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).
此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.
16、(1)见解析;(2)见解析;(3)能,图见解析;
【解析】
(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
【详解】
(1)如图所示:
(2)如图所示:
(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
17、 (1)证明见解析;(2)证明见解析.
【解析】
(1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;
(2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥DC,
∴∠ABE=∠CDF,
∵AG=CH,
∴BG=DH,
在△BEG和△DFH中,
,
∴△BEG≌△DFH(SAS);
(2)∵△BEG≌△DFH(SAS),
∴∠BEG=∠DFH,EG=FH,
∴∠GEF=∠HFB,
∴GE∥FH,
∴四边形GEHF是平行四边形.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
18、(1)1;(2)见解析
【解析】
分析:(1)根据绝对值的性质,二次根式的性质和化简,乘方的意义,直接计算并化简即可;
(2)根据矩形的性质,得到∠B=∠C=90°,AB=CD,然后根据HL证明Rt△ABF≌Rt△DCE,进而根据全等三角形的性质得到结论.
详解:(1)原式=;
(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,
∵AF=DE,∴Rt△ABF≌Rt△DCE,∴BF=EC,∴BE=CF.
点睛:此题猪腰考查了实数的运算和矩形的性质的应用,解(1)的关键是熟记绝对值的性质,二次根式的性质和化简,乘方的意义,解(2)的关键是灵活运用矩形的性质证明Rt△ABF≌Rt△DCE.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
分式值为零的条件:分子为零且分母不为零,即且.
【详解】
分式的值为1
且
解得:
故答案为.
从以下三个方面透彻理解分式的概念:
分式无意义分母为零;
分式有意义分母不为零;
分式值为零分子为零且分母不为零.
20、(-,0)
【解析】
先计算得到点D的坐标,根据旋转的性质依次求出点D旋转后的点坐标,得到变化的规律即可得到答案.
【详解】
∵菱形的两个顶点坐标为,,
∴对角线的交点D的坐标是(2,2),
∴,
将菱形绕点以每秒的速度逆时针旋转,
旋转1次后坐标是(0, ),
旋转2次后坐标是(-2,2),
旋转3次后坐标是(-,0),
旋转4次后坐标是(-2,-2),
旋转5次后坐标是(0,-),
旋转6次后坐标是(2,-2),
旋转7次后坐标是(,0),
旋转8次后坐标是(2,2)
旋转9次后坐标是(0,,
由此得到点D旋转后的坐标是8次一个循环,
∵,
∴第秒时,菱形两对角线交点的坐标为(-,0)
故答案为:(-,0).
此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D的坐标依次求出旋转后的坐标得到变化规律是解题的关键.
21、x≠1
【解析】
根据分式有意义的条件,即可求解.
【详解】
∵在函数中,x-1≠0,
∴x≠1.
故答案是:x≠1.
本题主要考查函数的自变量的取值范围,掌握分式的分母不等于零,是解题的关键.
22、
【解析】
利用平行四边形的对角线互相平分得出AO=AC=1,BD=2BO,根据勾股定理求出BO的长,进而可求出BD的长.
【详解】
解:∵▱ABCD的对角线AC与BD相交于点O,AB=AC=2,
∴AO=CO= AC=1,BD=2BO.
∵AB⊥AC,
∴BD=2BO=,
故答案为:.
本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.
23、(2,0)
【解析】
根据x轴上点的坐标特点解答即可.
【详解】
解:∵点P(m+3,m+1)在直角坐标系的x轴上,
∴点P的纵坐标是0,
∴m+1=0,解得,m=-1,
∴m+3=2,则点P的坐标是(2,0).
故答案为(2,0).
二、解答题(本大题共3个小题,共30分)
24、
【解析】
过F作FH垂直于AB,得到∠FHB为直角,进而求出∠EFD的度数为30°,利用30°角所对的直角边等于斜边的一半求出EF的长,再利用勾股定理求出DF的长,由EF与AD平行,得到内错角相等,确定出∠FDA为30°,再利用30°角所对的直角边等于斜边的一半求出FH的长,进而利用勾股定理求出DH的长,由DH-BH求出BD的长即可.
【详解】
解:过点F作FH⊥AB于点H,
∴∠FHB=90°,
∵∠EDF=90°,∠E=60°,
∴∠EFD=90°-60°=30°,
∴EF=2DE=24,
∴,
∵EF∥AD,
∴∠FDA=∠DFE=30°,
∴,
∴,
∵△ABC为等腰直角三角形,
∴∠ABC=45°,
∴∠HFB=90°-45°=45°,
∴∠ABC=∠HFB,
∴,
则BD=DH-BH=.
此题考查了勾股定理,以及平行线的性质,熟练掌握勾股定理是解本题的关键.
25、(1)且;(2)见解析;(3),,
【解析】
(1)根据平行四边形的判定与性质即可求解;
(2)过作,设,,根据勾股定理与平行四边形的性质即可求解;(3)先根据等边三角形的性质求出,,,根据平行四边形的性质求出,,再分以为对角线时的一种情况, ②以为边时的两种情况分别进行讨论求解.
【详解】
(1)∵将沿直线平移到的位置,
∴AO∥DB,AO=DB,
故答案为:AO∥DB且AO=DB,
(2)解:
过作,设,,
在中,,
在中,,
在中,,
∴
∵
∴
∵
∴
∵且
∴四边形为平行四边形
∴,
∴
(3)解:如图所示,满足题意的点坐标有3个。
∵等边的边长为2
∴,,
∵,
∴四边形为平行四边形
∴
∴
∵∴
①以为对角线时,四边形为平行四边形
∴,
∴.
②以为边时,有两种情况:
当四边形为平行四边形时,
∴.
当四边形为平行四边形时,
,
∵,
∴
∴.
综上所述,满足题意的坐标有:,,.
此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的判定与性质、直角坐标系及勾股定理的应用.
26、(1);(2).
【解析】
(1)选逐项化简,再合并同类项或同类二次根式即可;
(2)先计算二次根式的乘法和除法,再合并同类项即可.
【详解】
(1)
=4--4+2
=;
(2)
=a+-a
=.
本题考查了二次根式的混合运算,熟练掌握二次根式的性质及运算法则是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
温度/℃
22
24
26
29
天数
2
1
3
1
输入汉字(个)
132
133
134
135
136
137
甲组人数(人)
1
0
1
5
2
1
乙组人数(人)
0
1
4
1
2
2
组
众数
中位数
平均数()
方差()
甲组
乙组
134
134.5
135
1.8
组
众数
中位数
平均数()
方差()
甲组
135
135
135
1.6
乙组
134
134.5
135
1.8
相关试卷
这是一份四川省南充市陈寿中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省眉山市2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省绵阳市三台县数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)