2024-2025学年四川省绵阳市三台县数学九年级第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点中,与点(-3,4)在同一个反比例函数图像上的点是
A.(2,-3)B.(3,4)C.(2,-6)D.(-3,-4)
2、(4分)化简的结果为( )
A.﹣B.﹣yC.D.
3、(4分)下列实数中,无理数是( )
A.B.C.D.
4、(4分)为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x公里,根据题意列出的方程正确的是( )
A.B.
C.D.
5、(4分)三角形两边的长分别是8和6,第三边的长是方程x2-12x+20=0的一个实数根,则三角形的周长是( )
A.24 B.24或16 C.26 D.16
6、(4分)下列各组数据为边的三角形中,是直角三角形的是( )
A.8,15,16B.5,12,15C.1,2,D.2,,
7、(4分)如图,直线经过和两点,则不等式的解集为( )
A.B.C.D.
8、(4分)如图所示,将△ABC绕点A按逆时针旋转50°后,得到△ADC′,则∠ABD的度数是( )
A.30°B.45°C.65°D.75°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,则____.
10、(4分)如图,平行四边形 的周长为 , 相交于点 , 交 于点 ,则 的周长为________ .
11、(4分)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 ___________________ .它是 ________ 命题(填“真”或“假”).
12、(4分)菱形两对角线长分别为24和10,则这个菱形的面积是________,菱形的高为_____.
13、(4分)某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为 80、90、82, 若三项成绩分别按 3:5:2,则她最后得分的平均分为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:是一元二次方程的两实数根.
(1)求 的值;
(2)求 x1 x2的值.
15、(8分)先化简,再求值: ,其中a=3
16、(8分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
17、(10分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图1,直线,点,在直线上,点,在直线上,若,则四边形是半对角四边形.
(1)如图1,已知,,,若直线,之间的距离为,则AB的长是____,CD的长是______;
(2)如图2,点是矩形的边上一点,,.若四边形为半对角四边形,求的长;
(3)如图3,以的顶点为坐标原点,边所在直线为轴,对角线所在直线为轴,建立平面直角坐标系.点是边上一点,满足.
①求证:四边形是半对角四边形;
②当,时,将四边形向右平移个单位后,恰有两个顶点落在反比例函数的图象上,求的值.
18、(10分)如图,王华在晚上由路灯走向路灯,当他走到点时,发现身后 他影子的顶部刚好接触到路灯的底部,当他向前再步行到达点时 ,发现身前他影子的顶部刚好接触到路灯的底部,已知王华的身高是,如果两个路灯之间的距离为,且两路灯的高度相同,求路灯的高度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=2,CD=1,则AC的长是_______.
20、(4分)如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为_____.
21、(4分)如果根式有意义,那么的取值范围是_________.
22、(4分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是_________________.
23、(4分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)如图,已知矩形中,点是边上的一动点(不与点、重合),过点作于点,于点,于点,猜想线段三者之间具有怎样的数量关系,并证明你的猜想;
(2)如图,若点在矩形的边的延长线上,过点作于点,交的延长线于点,于点,则线段三者之间具有怎样的数量关系,直接写出你的结论;
(3)如图,是正方形的对角线,在上,且,连接,点是上任一点,与点,于点,猜想线段之间具有怎样的数量关系,直接写出你的猜想.
25、(10分)已知y﹣2与x成正比例,当x=2时,y=1.
(1)求y与x之间的函数解析式.
(2)在所给直角坐标系中画出函数图象.
(3)由函数图象直接写出当﹣2≤y≤2时,自变量x的取值范围.
26、(12分)先化简,再求值:÷(2+),其中x=﹣1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.
【详解】
∵反比例函数y=kx过点(−3,4),
∴k=(−3)×4=−12,
A. ∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;
B. ∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;
C. ∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;
D. ∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。
故选C.
此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值
2、D
【解析】
先因式分解,再约分即可得.
【详解】
故选D.
本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
3、D
【解析】
根据无理数、有理数的定义即可判定选择项.
【详解】
解:A、是分数,属于有理数,本选项不符合题意;
B、是有限小数,属于有理数,本选项不符合题意;
C、是整数,属于有理数,本选项不符合题意;
D、=是无理数,本选项不符合题意;
故选:D.
此题主要考查了无理数定义---无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
4、C
【解析】
解:设甲每小时骑行x公里,根据题意得:.故选C.
点睛:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.
5、A
【解析】
试题分析:
∴
∴或
∴,
而三角形两边的长分别是8和6,
∵2+6=8,不符合三角形三边关系,=2舍去,
∴x=10,即三角形第三边的长为10,
∴三角形的周长=10+6+8=1.
故选A.
考点:解一元二次方程-因式分解法;三角形三边关系.
点评:本题考查了利用因式分解法解一元二次方程的方法:先把方程化为一般形式,然后把方程左边因式分解,这样就把方程化为两个一元一次方程,再解一元一次方程即可.也考查了三角形三边的关系.
6、D
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、82+152≠162,故不是直角三角形,故选项错误;
B、52+122≠152,故不是直角三角形,故选项错误;
C、12+22≠()2,故不是直角三角形,故选项错误;
D、22+()2=()2,故是直角三角形,故选项正确;故选:D.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
7、B
【解析】
从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在直线y=1上(或下)方部分所有的点的横坐标所构成的集合.
【详解】
∵线y=kx+b经过A(1,1)和B(6,0)两点,不等式kx+b<1的解集为x>1.
故选B.
本题考查了一次函数与一元一次不等式的关系,正确理解一次函数与一元一次不等式的关系是解题的关键.
8、C
【解析】
先根据旋转的性质得AB=AD,∠BAD=50°,则利用等腰三角形的性质得到∠ABD=∠ADB,然后根据三角形内角和计算∠ABD的度数.
【详解】
∵△ABC绕点A按逆时针旋转50°后,得到△ADC′,
∴AB=AD,∠BAD=50°,
∴∠ABD=∠ADB,
∴∠ABD=(180°-50°)=65°.
故选:C.
本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理;熟练掌握旋转的性质,得到△ABD为等腰三角形是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先求出x的值,然后提取公因式xy分解因式,再把数值代入得出答案.
【详解】
解:∵,
∴x=-5
∴xy(x+y)
=-5×3×(-2)
=1.
此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.
10、1
【解析】
根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.
【详解】
解:∵平行四边形ABCD,
∴AD=BC,AB=CD,OA=OC,
∵EO⊥AC,
∴AE=EC,
∵AB+BC+CD+AD=16,
∴AD+DC=1,
∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=1,
故答案为1.
本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力,题目较好,难度适中.
11、如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 真
【解析】
分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.
故答案为如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.
点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
12、110cm1,cm.
【解析】
试题分析:已知两对角线长分别为14cm和10cm,利用勾股定理可得到菱形的边长=13cm,根据菱形面积==两条对角线的乘积的一半可得菱形面积=×14×10=110cm1.又因菱形面积=底×高,即高=菱形面积÷底=cm.
考点:菱形的性质;勾股定理.
13、85.4 分
【解析】
根据加权平均数的概念,注意相对应的权比即可求解.
【详解】
8030%+9050%+8220%=85.4
本题考查了加权平均数的求法,属于简单题,熟悉加权平均数的概念是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)27;(2)
【解析】
(1)根据根与系数的关系,求出和 的值,即可得到答案;
(2)根据题意,可得,计算即可得到答案.
【详解】
解:(1)∵是一元二次方程的两实数根,
∴,,
∴;
(2)根据题意,,
∴;
本题考查了一元二次方程的根与系数的关系,解题的关键是掌握,,然后变形计算即可.
15、
【解析】
根据分式的运算法则及运算顺序,把所给的分式化为最简分式,再代入求值即可.
【详解】
原式=
当 时,原式=
本题考查了分式的化简求值,根据分式的运算法则及运算顺序,把所给的分式化为最简分式是解决问题的关键.
16、(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
【解析】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,根据工作时间工作总量工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设A型机器安排m台,则B型机器安排台,根据每小时加工零件的总量型机器的数量型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.
【详解】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,
依题意,得:,
解得:x=6,
经检验,x=6是原方程的解,且符合题意,
.
答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;
(2)设A型机器安排m台,则B型机器安排台,
依题意,得:,
解得:,
为正整数,
,
答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.
本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
17、(1)2;;(2)AD=3;(3)①证明见解析;②的值为为或.
【解析】
(1)过点作于点,过点作于点,通过解直角三角形可求出,的长;
(2)根据半对角四边形的定义可得出,进而可得出,由等角对等边可得出,结合即可求出的长;
(3)①由平行四边形的性质可得出,,进而可得出,根据等腰三角形的性质及三角形外角的性质可得出,再结合半对角四边形的定义即可证出四边形是半对角四边形;
②由平行四边形的性质结合,可得出点,,的坐标,分点,落在反比例函数图象上及点,落在反比例函数图象上两种情况考虑:利用平移的性质及反比例函数图象上点的坐标特征可得出关于的一元一次方程,解之即可得出值,再利用反比例函数图象上点的坐标特征可求出值;同可求出值.综上,此题得解.
【详解】
解:(1)如图1,过点作于点,过点作于点.
,
,.
在中,;
在中,.
故答案为:2;.
(2)如图2,
四边形为半对角四边形,
,
,
,
.
(3)如图3,
①证明四边形为平行四边形,
,,
,
.
又,
四边形是半对角四边形;
②由题意,可知:点的坐标为,,点的坐标为,,点的坐标为.
当点,向右平移个单位后落在反比例函数的图象上时,,
解得:,
;
当点,向右平移个单位后落在反比例函数的图象上时,
,
解得:,
.
综上所述:的值为为或.
本题考查了解直角三角形、等腰三角形的性质、三角形外角的性质、平行四边形的性质、反比例函数图象上点的坐标特征以及解一元一次方程,解题的关键是:(1)通过解直角三角形求出,的长;(2)利用半对角四边形的定义及矩形的性质,求出;(3)①利用等腰三角形的性质、三角形外角的性质以及平行四边形的性质,找出;②分点,落在反比例函数图象上和点,落在反比例函数图象上两种情况,求出的值.
18、路灯的高度是
【解析】
根据题意结合图形可知,AP=OB,在P点时有,列出比例式进行即可即可
【详解】
解:由题意知:
即
解得
答:路灯的高度是
本题主要考查相似三角形的应用,熟练掌握相似三角形对应边成比例是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.
【详解】
解:作DE⊥AB于E,
∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,
∴DE=DC=1,
在Rt△ACD和Rt△AED中,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
由勾股定理得,
设AC=AE=x,
由勾股定理得x2+32=(x+)2,
解得x=.
∴AC=.
故答案为:.
本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
20、2cm.
【解析】
试题解析:∵四边形ABCD为平行四边形,
∴AE∥BC,AD=BC=8cm,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE=6cm,
∴DE=AD﹣AE=8﹣6=2(cm).
21、
【解析】
根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.
【详解】
根据题意得:x+2⩾0,
解得:x⩾−2.
故答案是:x⩾−2.
此题考查二次根式有意义的条件,难度不大
22、甲
【解析】
根据方差的意义即可得出结论.
【详解】
根据方差的定义,方差越小数据越稳定,因为=0.4,=3.2, =1.6,
方差最小的为甲,所以本题中成绩比较稳定的是甲,
故答案为甲.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
23、.
【解析】
连接BD,根据菱形的对角线平分一组对角线可得∠BAD=∠ADC=60°,然后判断出△ABD是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB的最小值=DE,然后根据等边三角形的性质求出DE即可得解.
【详解】
如图,连接BD,
四边形ABCD是菱形,
∠BAD=∠ADC=×120°=60°
AB=AD(菱形的邻边相等),
△ABD是等边三角形,
连接DE,
B、D关于对角AC对称,
DE与AC的交点即为所求的点P, PE+PB的最小值=DE
E是AB的中点,
DE⊥AB
菱形ABCD周长为16,
AD=16÷4=4
DE=×4=2
故答案为2
二、解答题(本大题共3个小题,共30分)
24、(1),见解析;(2)或者,见解析;(3).
【解析】
(1)过点作于,先得出四边形是矩形,再证明四边形是矩形,证明,求出即可;
(2)过C点作CO垂直EF,可得矩形HCOF,因为HC=FO,只要证明EO=EG,最后根据AAS证明.
(3)连接AC交BD于O,过点E作EH⊥AC,证明矩形FOHE,证明EG=CH,根据AAS证明.
【详解】
(1)答:
证明:如图1,过点作于.
,
四边形是矩形.
.
.
四边形是矩形,
,且互相平分
∴∠DBC=∠ACB
,
,
又,
.
∴EG=CN
;
即;
(2)或者;
过C点作CO垂直EF,
∵,CO⊥EF,
∴矩形COHF
∴CE∥BD,CH=DO
∴∠DBC=∠OCE
∵矩形ABCD
∴∠DBC=∠ACB
∵∠ECG=∠ACB
∴∠ECG=∠OCE
∵CO⊥EF,
∴∠G=∠COE
∵CE=CE
∴
∴EO=EG
∴或者;
(3).
连接AC交BD于O,过点E作EH⊥AC,
∵正方形ABCD
∴FO⊥AC,
∵EH⊥AC
∴矩形FEOH,∠EHC=90°
∵EG⊥BC,EF=OH
∴∠EGC=90°=∠EHC
∴EH∥BD
∴∠HEC=∠FLE
∵BL=BC
∴∠GCE=∠FLE
∴∠GCE=∠HEC
∵EC=EC
∴
∴HC=GE
∴
本题考查的是矩形的综合运用,熟练掌握全等三角形是解题的关键.
25、(1)y=2x+2;(2)如图见解析;(3)-2≤x≤2。
【解析】
(1)根据正比例的定义设y-2=kx(k≠2),然后把已知数据代入进行计算求出k值,即可得解;
(2)利用描点法法作出函数图象即可;
(3)根据图象可得结论.
【详解】
(解:(1)∵y-2与x成正比例,
∴设y-2=kx(k≠2),
∵当x=2时,y=1,
∴1-2=2k,
解得k=2,
∴y-2=2x,
函数关系式为:y=2x+2;
(2)当x=2时,y=2,
当y=2时,2x+2=2,解得x=-1,
所以,函数图象经过点(2,2),(-1,2),
同理,该函数图象还经过点(1,4),(-2,-2),(-3,-4).
函数图象如图:
.
(3)由图象得:当-2≤y≤2时,自变量x的取值范围是:-2≤x≤2.
本题考查了待定系数法求一次函数解析式,一次函数图象的作法,根据正比例的定义设出函数表达式是解题的关键.
26、当x=﹣1时,原式==.
【解析】试题分析:原式=÷=÷==,当x=﹣1时,原式==.
考点:分式的化简求值.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年四川省绵阳市九年级数学第一学期开学综合测试试题【含答案】: 这是一份2024-2025学年四川省绵阳市九年级数学第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省绵阳市东辰国际学校九年级数学第一学期开学达标检测试题【含答案】: 这是一份2024-2025学年四川省绵阳市东辰国际学校九年级数学第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省阆中学市九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年四川省阆中学市九年级数学第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。