四川省成都西蜀实验2024-2025学年数学九上开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是( )
A.B.C.D.
2、(4分)下面四个应用图标中,属于中心对称图形的是( )
A.B.C.D.
3、(4分)不能判定四边形ABCD为平行四边形的题设是( )
A.AB=CD,AB∥CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC
4、(4分)计算的的结果是( )
A.B.C.4D.16
5、(4分)如果5x=6y,那么下列结论正确的是( )
A.B.C.D.
6、(4分)对于一次函数,如果随的增大而减小,那么反比例函数满足( )
A.当时,B.在每个象限内,随的增大而减小
C.图像分布在第一、三象限D.图像分布在第二、四象限
7、(4分)下列二次根式,最简二次根式是( )
A.B.C.D.
8、(4分)2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )
A.1999年B.2004年C.2009年D.2014年
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某种型号的空调经过两次降价,价格比原来下降了36%,则平均每次下降的百分数是_____%.
10、(4分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是 度.
11、(4分)五子棋的比赛规则是:一人执黑子,一人执白子,两人轮流放棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在位置用坐标表示是(-2,2),黑棋B所在位置用坐标表示是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,则点C的坐标是__________.
12、(4分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是_____.
13、(4分)如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学数学活动小组为了调查居民的用水情况,从某社区的户家庭中随机抽取了户家庭的月用水量,结果如下表所示:
求这户家庭月用水量的平均数、众数和中位数;
根据上述数据,试估计该社区的月用水量;
由于我国水资源缺乏,许多城市常利用分段计费的方法引导人们节约用水,即规定每个家庭的月基本用水量为(吨),家庭月用水量不超过(吨)的部分按原价收费,超过(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合适?简述理由.
15、(8分) (1)解方程:;
(2)解不等式:2(x-6)+4≤3x-5,并将它的解集在数轴上表示出来.
16、(8分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
(3)结合图像写出不等式的解集;
17、(10分)如图,在中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.
(1)求证:AE=CF
(2)若AB=9,AC=16,AE=4,BF=,求四边形ABCD的面积.
18、(10分)解不等式组:,并在数轴上表示出它的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知+=0,则(a﹣b)2的平方根是_____.
20、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AO=3,AE垂直平分OB于点E,则AD的长为_____.
21、(4分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=_____.
22、(4分)计算=__________.
23、(4分)如图,ABCD的对角线相交于点O,且ADCD,过点O作OMAC,交AD于点M.如果CDM的周长为8,那么ABCD的周长是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)分解因式
(1)
(2)
25、(10分)如图,正比例函数与反比例函数的图像交于A,B两点,过点A作AC⊥x轴,垂足为C,△ACO的面积为1.
(1)求反比例函数的表达式;
(2)点B的坐标为 ;
(3)当时,直接写出x的取值范围.
26、(12分)如图,菱形的对角线、相交于点,,,连接.
(1)求证:;
(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.
考点:函数的图象.
2、A
【解析】
根据中心对称图形的概念进行判断即可.
【详解】
解:A、图形是中心对称图形;
B、图形不是中心对称图形;
C、图形不是中心对称图形;
D、图形不是中心对称图形,
故选:A.
本题考查的是中心对称图形的概念.掌握定义是解题的关键,中心对称图形是要寻找对称中心,旋转180度后能与自身重合.
3、C
【解析】
A. ∵AB=CD,AB∥CD,
∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;
B. ∵∠A=∠C,∠B=∠D,
∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;
C. 由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;
D. ∵AB=CD,AD=BC,
∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形
故选C.
本题考查平行四边形的判定.
4、C
【解析】
根据算术平方根和平方根进行计算即可
【详解】
=4
故选:C
此题考查算术平方根和平方根,掌握运算法则是解题关键
5、A
【解析】
试题解析:A, 可以得出:
故选A.
6、D
【解析】
一次函数,y随着x的增大而减小,则m<0,可得出反比例函数在第二、四象限,在每个象限内y随x的增大而增大.
【详解】
解:∵一次函数,y随着x的增大而减小,
∴m<0,
∴反比例函数的图象在二、四象限;且在每一象限y随x的增大而增大.
∴A、由于m<0,图象在二、四象限,所以x、y异号,错误;
B、错误;
C、错误;
D、正确.
故选:D.
本题考查了一次函数和反比例函数的图象和性质,注意和的图象与式子中的符号之间的关系.
7、C
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含开的尽的因数,故A不符合题意;
B、被开方数含分母,故B不符合题意;
C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;
D、被开方数含能开得尽方的因数或因式,故D不符合题意.
故选C.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
8、C
【解析】
把数据的年份从小到大排列,根据中位数的定义即可得答案,
【详解】
把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,
∵中间的年份是2009年,
∴五次统计数据的中位数的年份是2009年,
故选:C.
本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20%.
【解析】
增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题求解.设平均每次下降的百分数是x,则根据题意可列方程(1-x)2=1-36%,解方程即可求解.注意根据实际意义进行值的取舍.
【详解】
设平均每次下降的百分数是x,根据题意得(1-x)2=1-36%
解方程得x1=0.2=20%,x2=1.8(舍去)
所以平均每次下降的百分数是20%.
故答案是:20%.
考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).
10、144
【解析】
连接OE,
∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,
∴点E,A,B,C共圆,
∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,
∴点E在量角器上对应的读数是:144°,
故答案为144.
11、 (3,3)
【解析】
根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.
【详解】
由题意可得如图所示的平面直角坐标系,
故点C的坐标为(3,3),
故答案为(3,3).
本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.
12、30°或150°.
【解析】
分等边△ADE在正方形的内部和外部两种情况分别求解即可得.
【详解】
如图1,
∵四边形ABCD为正方形,△ADE为等边三角形,
∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,
∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,
∴∠AEB=∠CED=15°,
则∠BEC=∠AED﹣∠AEB﹣∠CED=30°;
如图2,
∵△ADE是等边三角形,
∴AD=DE,
∵四边形ABCD是正方形,
∴AD=DC,
∴DE=DC,
∴∠CED=∠ECD,
∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,
∴∠CED=∠ECD=×(180°﹣30°)=75°,
∴∠BEC=360°﹣75°×2﹣60°=150°,
故答案为30°或150°.
本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质、运用分类讨论思想画出符合题意的图形并准确识图是解题的关键.
13、
【解析】
根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:根据勾股定理,AB=,
BC=,
AC=,
∵AC2+BC2=AB2=26,
∴△ABC是直角三角形,
∵点D为AB的中点,
∴CD=AB=×=.
故答案为.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、7;(吨);众数或中位数较合理,
【解析】
(1)根据加权平均数计算平均数;众数即出现次数最多的数据,中位数应是第15个和第15个数据的平均数;
(2)根据样本平均数估计总体平均数,从而计算该社区的月用水量;
(3)因为这组数据中,极差较大,用平均数不太合理,所以选用众数或中位数,有代表性.
【详解】
这户家庭月用水量的平均数(吨)
出现了次,出现的次数最多,则众数是,
∵共有个数,
∴中位数是第、个数的平均数,
∴中位数是(吨),
∵社区共户家庭,
∴该社区的月用水量(吨);
众数或中位数较合理.
因为满足大多数家庭用水量,另外抽样的户家庭用水量存在较大数据影响了平均数.
本题主要考查了众数、中位数、平均数的定义,解本题的要点在于掌握平均数的计算方法,理解众数和中位数的概念,能够正确找到众数和中位数,学会运用平均数、众数和中位数解决实际问题.
15、(1)x=;(2)x≥-3.
【解析】
分析:(1)首先找出最简公分母,再去分母进而解方程得出答案;
(2)首先去括号,进而解不等式得出答案.
详解:(1)去分母得:x=3(x-3),
解得:x=,
检验:x=时,x(x-3)≠0,则x=是原方程的根;
(2)2(x-6)+4≤3x-5
2x-12+4≤3x-5,
解得:x≥-3,
如图所示:
.
点睛:此题主要考查了解分式方程以及解不等式,正确掌握解题步骤是解题关键.
16、(1)y=,y=-x+1;(3)点E的坐标为(0,5)或(0,4);(3)0<x<3或x>13
【解析】
(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;
(3)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,1),得出PE=|m﹣1|,根据S△AEB=S△BEP﹣S△AEP=3,求出m的值,从而得出点E的坐标.
(3)根据函数图象比较函数值的大小.
【详解】
解:(1)把点A(3,6)代入y=,得m=13,则y=.
得,解得把点B(n,1)代入y=,得n=13,则点B的坐标为(13,1).
由直线y=kx+b过点A(3,6),点B(13,1),
则所求一次函数的表达式为y=﹣x+1.
(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,1).∴PE=|m﹣1|.
∵S△AEB=S△BEP﹣S△AEP=3,∴×|m﹣1|×(13﹣3)=3.
∴|m﹣1|=3.∴m1=5,m3=4.∴点E的坐标为(0,5)或(0,4).
(3)根据函数图象可得的解集:或;
考核知识点:反比例函数和一次函数的综合运用.熟记函数性质是关键.
17、(1)见解析;(2)
【解析】
(1)首先由平行四边形的性质可得AB=CD,AB∥CD,再根据平行线的性质可得∠BAE=∠DCF,∠BEC=∠DFA,然后根据AAS定理判定△ABE≌△CDF,即可证明得到AE=CF;
(2)通过作辅助线求出△ABC的面积,即可得到四边形ABCD的面积.
【详解】
解:(1)证明:∵在平行四边形ABCD中,AB=CD,AB∥CD,
∴∠BAC=∠DCA,
又∵BE∥DF,
∴∠BEF=∠DFE,
∴∠BEA=∠DFC,
∴在△ABE和△CDF中,
,
∴△ABE≌△CDF,
∴AE=CF;
(2)连接BD交AC于点O,作BH⊥AC交AC于点H
∵在平行四边形ABCD中,AC、BD是对角线,
∴AO=CO=8,AF=12,
∵AB2+BF2=92+=144,AF2=144,
∴AB2+BF2=AF2,
∴∠ABF=90°,
∴BH===,
∴S平行四边形ABCD=2S△ABC==.
此题主要考查了平行四边形的性质,全等三角形的判定与性质,以及利用面积法求三角形的高等知识,难度一般.
18、﹣2<x≤3
【解析】
分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可。
【详解】
解:,
解不等式①得:x>﹣2,
解不等式②得:x≤3,
所以不等式组的解集为﹣2<x≤3,
在同一数轴上分别表示出它们的解集得
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、±1.
【解析】
根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.
【详解】
根据题意得a-1=2,且b-5=2,
解得:a=1,b=5,
则(a-b)2=16,则平方根是:±1.
故答案是:±1.
本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.
20、3
【解析】
由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.
【详解】
∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=;
故答案是:3.
考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
21、22.5°
【解析】
根据正方形的对角线平分一组对角求出∠CBE=45°,再根据等腰三角形两底角相等求出∠BCE=67.5°,然后根据∠DCE=∠BCD-∠BCE计算即可得解.
【详解】
∵四边形ABCD是正方形,
∴∠CBE=45°,∠BCD=90°,
∵BE=BC,
∴∠BCE=(180°-∠BCE)=×(180°-45°)=67.5°,
∴∠DCE=∠BCD-∠BCE=90°-67.5°=22.5°.
故答案为22.5°.
本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,需熟记.
22、
【解析】
分析:先把各根式化简,然后进行合并即可得到结果.
详解:原式=
=
点睛:本题主要考查二次根式的加减,比较简单.
23、16
【解析】
由四边形ABCD是平行四边形,可得OA=OC,又由OM⊥AC,可得AM=CM,然后由△CDM的周长为8,求得平行四边形ABCD的周长.
【详解】
∵四边形ABCD是平行四边形,
∴OA=OC,
∵OM⊥AC,
∴AM=CM,
∵△CDM的周长为8,
∴CM+DM+CD=AM+DM+CD=AD+CD=8,
∴平行四边形ABCD的周长是:2×8=16.
故答案为:16.
本题考查了平行四边形的性质与线段垂直平分线的性质,解题的关键是熟练的掌握平行四边形与线段垂直平分线的性质.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)
【解析】
(1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.
【详解】
解:(1)
=
=
(2)
=
=
=
本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.
25、解: ;
(2)B(-2,-1);
(3)-2
【解析】
(1)根据反比例函数图象的性质,反比例函数上任意一点向x轴(或y轴)作垂线,这一点、所交点与原点之间所围成的直角三角形的面积等于 ,图象经过一、三象限k>0;
(2)联立正比例函数与反比例函数,解出的x,y分别为交点的横、纵坐标,这里需注意解得的解集有两个,说明交点有两个,需要考虑点所在位于哪一个象限;
(3)观察图像可以解决问题,谁的图像在上面,谁对应的函数值大,这里需过两个交点作x轴垂线,两条垂线与y轴将图象分成四部分,分别讨论.
【详解】
解:(1)∵△ACO的面积为1,C⊥x轴
∴,
即,
∵点A是函数的点
∴,
∵反比例函数的图像在第一、三象限,
∴k>0
∴k=8,反比例函数表达式为 ;
(2)联立 ,可解得 或,
∵B点在第三象限,
∴点B坐标为(-2,-1).
(3)根据(2)易得A点坐标为(2,1),
所以当-2
(1)考查反比例函数图象的性质问题,图中△ACO的面积正好是,图象在第一、三象限,所以k>0;
(2)考查函数交点问题,两个函数的交点的横、纵坐标分别是联立它们,所形成的方程组的解集对应的x、y值;
(3)可借助图象比较两个函数的大小,这里一定要注意分不同区间去考虑.
26、(1)见解析;(2)当时,四边形OCED为正方形,见解析.
【解析】
(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,由矩形的性质可得OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,根据正方形的判定方法证明即可.
【详解】
解:(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形,
∴OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,
理由如下:
∵四边形ABCD是菱形,∠ABC=90°,
∴四边形ABCD是正方形,
∴DO=CO,
又∵四边形OCED是矩形,
∴四边形OCED是正方形.
本题考查了菱形的性质,矩形的判定与性质,正方形的判定和性质,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
月用水量(吨)
户数
四川省成都市金牛区蜀西实验学校2024年数学九上开学联考试题【含答案】: 这是一份四川省成都市金牛区蜀西实验学校2024年数学九上开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省成都市武侯区西蜀实验学校数学九上开学综合测试试题【含答案】: 这是一份2024-2025学年四川省成都市武侯区西蜀实验学校数学九上开学综合测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省成都市青羊区树德实验中学九上数学开学考试模拟试题【含答案】: 这是一份2024-2025学年四川省成都市青羊区树德实验中学九上数学开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。