![上海奉贤华亭学校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16291911/0-1729905140364/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![上海奉贤华亭学校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16291911/0-1729905140385/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![上海奉贤华亭学校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16291911/0-1729905140416/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
上海奉贤华亭学校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图中,点为边上一点,点在上,过点作交于点,过点作交于, 下列结论错误的是( )
A.B.C.D.
2、(4分)如图,已知四边形ABCD是边长为4的正方形,E为AB的中点,将△ADE绕点D沿逆时针方向旋转后得到△DCF,连接EF,则EF的长为( )
A.2B.2C.2D.2
3、(4分)方程x(x-6)=0的根是( )
A.x1=0,x2=-6B.x1=0,x2=6C.x=6D.x=0
4、(4分)甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A.B.C.D.
5、(4分)已知直角三角形的两条直角边长分别为1和4,则斜边长为( )
A.3B.C.D.5
6、(4分)如图,在中,,,.点,,分别是相应边上的中点,则四边形的周长等于( )
A.8B.9C.12D.13
7、(4分)化简的结果是( )
A.2B.-2C.D.4
8、(4分)如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )
A.第3分时汽车的速度是40千米/时
B.第12分时汽车的速度是0千米/时
C.从第3分到第6分,汽车行驶了120千米
D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.
10、(4分)若代数式在实数范围内有意义,则的取值范围为____.
11、(4分)已知四边形ABCD为菱形,其边长为6,,点P在菱形的边AD、CD及对角线AC上运动,当时,则DP的长为________.
12、(4分)当_____________时,在实数范围内有意义.
13、(4分)计算:=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,,满足等式.
(1)求、、的值;
(2)判断以、、为边能否构成三角形?若能构成三角形,此三角形是什么形状的三角形?若不能,请说明理由;
15、(8分)已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=1.
(1)求证:此方程总有两个实数根;
(2)若此方程有一个根大于1且小于1,求k的取值范围.
16、(8分)如图,AD是等腰△ABC底边BC上的中线,点O是AC中点,延长DO到E,使OE=OD,连接AE,CE,求证:四边形ADCE的是矩形.
17、(10分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)若∠A=40°,求∠DBC的度数;
(2)若AE=6,△CBD的周长为20,求△ABC的周长.
18、(10分)解不等式组:,并写出所有整数解.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在一张长为7cm,宽为5cm的矩形纸片上,现在剪下一个腰长为4cm的等腰三角形,要求等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上,则剪下的等腰三角形一腰上的的高为_____________.
20、(4分)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则CE与EO之间的数量关系是_____.
21、(4分)在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.
22、(4分)一次函数y=﹣2x+6的图象与x轴的交点坐标是_____.
23、(4分)如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40
(1)这组数据的平均数为 ,中位数为 ,众数为 .
(2)用哪个值作为他们年龄的代表值较好?
25、(10分) “大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.
26、(12分)如图所示,正方形ABCD的边长为4,AD∥y轴,D(1,-1).
(1)写出A,B,C三个顶点的坐标;
(2)写出BC的中点P的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据三角形的平行线定理:平行于三角形一边的直线截其他两边所在的 直线 ,截得的三角形的三边与原三角形的三边对应成比例,即可得解.
【详解】
根据三角形的平行线定理,可得
A选项,,错误;
B选项,,正确;
C选项,,正确;
D选项,,正确;
故答案为A.
此题主要考查三角形的平行线定理,熟练掌握,即可解题.
2、D
【解析】
先利用勾股定理计算出DE,再根据旋转的性质得∠EDF=∠ADC=90°,DE=DF,则可判断△DEF为等腰直角三角形,然后根据等腰直角三角形的性质计算EF的长.
【详解】
∵E为AB的中点,AB=4,∴AE=2,
∴DE==2.
∵四边形ABCD为正方形,∴∠A=∠ADC=90°,∴∠ADE+∠EDC=90°.
∵△ADE绕点D沿逆时针方向旋转后得到△DCF,∴∠ADE=∠CDF,DE=DF,∴∠CDF+∠EDC=90°,∴△DEF为等腰直角三角形,∴EF=DE=2.
故选D.
本题主要考查了旋转的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键.
3、B
【解析】
根据因式分解,原方程转化为x=0或x-6=0,然后解两个一次方程即可得答案.
【详解】
解:x(x-6)=0,
x=0或x-6=0,
∴x1=0,x2=6,
故选B.
本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的解法是关键.
4、A
【解析】
甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,
所以,.
故选A.
5、C
【解析】
根据勾股定理计算即可.
【详解】
解:由勾股定理得,斜边长=,
故选:C.
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
6、B
【解析】
根据三角形中位线的性质及线段的中点性质求解即可.
【详解】
解:点,,分别是相应边上的中点
是三角形ABC的中位线
同理可得,
四边形的周长
故答案为:B
本题考查了三角形的中位线,熟练运用三角形中位线的性质求线段长是解题的关键.
7、A
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
解:,
故选:A.
此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
8、C
【解析】
横轴表示时间,纵轴表示速度.
当第3分的时候,对应的速度是40千米/时,A对;
第12分的时候,对应的速度是0千米/时,B对;
从第3分到第6分,汽车的速度保持40千米/时,行驶的路程为40×=2千米,C错;
从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,D对.
综上可得:错误的是C.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<4
【解析】
观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.
【详解】
由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,
∴不等式kx-3>2x+b的解集是x<4.
故答案为:x<4.
本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.
10、且
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.
【详解】
解:根据二次根式有意义,分式有意义得:且≠0,
即且.
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
11、2或或
【解析】
分以下三种情况求解:(1)点P在CD上,如图①,根据菱形的边长以及CP1=2DP1可得出结果;(2)点P在对角线AC上,如图②,在三角形CDP2中,可得出∠P2DC=90°,进而可得出DP2的长;(3)当点P在边AD上,如图③,过点D作于点F,过点作于点E,设,则,再用含x的代数式表示出CE,EP3,CP3的长,根据勾股定理列方程求解即可.
【详解】
解:(1)当点P在CD上时,如解图①,
,,;
(2)当点P在对角线AC上时,如解图②,
,.
当时,,;
图① 图②
(3)当点P在边AD上时,如解图③,过点D作于点F,过点作于点E,设,则,
,,,,
,,
.
,在中,由勾股定理得,解得,(舍).
综上所述,DP的长为2或或.
故答案为:2或或.
本题主要考查菱形的性质,含30°直角三角形的性质以及勾股定理,在解答无图题时注意分类讨论,避免漏解.
错因分析 较难题.出错原因:①不能全面考虑所有情况,即根据动点在每一条边上进行分类讨论求解;②在第三种情况下不能将已知条件有效利用,转化到一个三角形中通过勾股定理列方程求解.
12、a≥1
【解析】
根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
【详解】
由题意得:a-1≥0,
解得:a≥1,
故答案为: a≥1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
13、
【解析】
先通分,再把分子相加减即可.
【详解】
解:原式=
故答案为:
本题考查的是分式的加减,熟知异分母的分式相加减的法则是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) a=,b=5,c=;(2)可以构成三角形;直角三角形;理由见解析
【解析】
(1)根据二次根式的非负性解出a、b、c的值即可.
(2)根据勾股定理逆定理判断即可.
【详解】
(1) ,
由二次根式的非负性可知:a=,b=5,c=.
(2)∵a+b>c>b-a,满足三边关系,
∴a、b、c能构成三角形,
∵a2=7,b2=25,c2=32,可得a2+b2=c2,
∴三角形为直角三角形.
本题考查二次根式的非负性和勾股定理逆定理,关键在于熟练掌握相关性质.
15、(3)证明见解析;(2)3<k<2.
【解析】
(3)根据方程的系数结合根的判别式,求得判别式恒成立,因此得证;
(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于的不等式组,解之即可.
【详解】
(3)证明:△=b2-4ac=[-(k+3)]2-4×(2k-2)=k2-6k+9=(k-3)2,
∵(k-3)2≥3,即△≥3,
∴此方程总有两个实数根,
(2)解:
解得 x3=k-3,x2=2,
∵此方程有一个根大于3且小于3,
而x2>3,
∴3<x3<3,
即3<k-3<3.
∴3<k<2,
即k的取值范围为:3<k<2.
本题考查了根的判别式,解题的关键是:(3)牢记“当时,方程总有两个实数根”,(2)正确找出不等量关系列不等式组.
16、详见解析
【解析】
根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可.
【详解】
证明:∵点O是AC中点,
∴AO=OC,
∵OE=OD,
∴四边形ADCE是平行四边形,
∵AD是等腰△ABC底边BC上的高,
∴∠ADC=90°,
∴四边形ADCE是矩形.
本题考查了矩形的判定和性质,等腰三角形的性质,综合运用定理进行推理和计算是解此题的关键,比较典型,难度适中.
17、(1)30°;(2)1.
【解析】
(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D.根据线段垂直平分线的性质,可得AD=BD,可得∠ABD的度数,即可求得∠DBC的度数.
(2)由△CBD的周长为20,可得AC+BC=20,根据AB=2AE=12,即可得出答案.
【详解】
解:(1)解:∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵AB的垂直平分线MN交AC于点D,
∴AD=BD,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC﹣∠ABD=30°.
(2)∵MN垂直平分AB,
∴DA=DB,AB=2AE=12,
∵BC+BD+DC=20,
∴AD+DC+BC=20,
∴AC+BC=20,
∴△ABC的周长为:AB+AC+BC=12+20=1.
此题考查了线段垂直平分线的性质以及等腰三角形的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键..
18、1,2,3,4,5,6
【解析】
根据不等式的性质依次求出各不等式的解集,再求出公共解集,即可求解.
【详解】
解
解不等式①得x≥1,
解不等式②得x<
故不等式组的解集为1≤x<
故整数解为1,2,3,4,5,6
此题主要考查不等式的解集,解题的关键是熟知不等式的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4或或
【解析】
分三种情况进行讨论:(1)△AEF为等腰直角三角形,得出AE上的高为AF=4;
(2)利用勾股定理求出AE边上的高BF即可;
(3)求出AE边上的高DF即可
【详解】
解:分三种情况:
(1)当AE=AF=4时,
如图1所示:
△AEF的腰AE上的高为AF=4;
(2)当AE=EF=4时,
如图2所示:
则BE=5-4=1,
BF=;
(3)当AE=EF=4时,
如图3所示:
则DE=7-4=3,
DF=,
故答案为4或或.
本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论,有一定的难度.
20、CE=3EO
【解析】
根据三角形的中位线得出DE=BC,DE∥BC,根据相似三角形的判定得出△DOE∽△BOC,根据相似三角形的性质求出CO=2EO即可.
【详解】
.解:CE=3EO,
理由是:连接DE,
∵在△ABC中,BD,CE分别是边AC,AB上的中线,
∴DE=BC,DE∥BC,
∴△DOE∽△BOC,
∴ =,
∴CO=2EO,
∴CE=3EO,
故答案为:CE=3EO.
.本题考查了三角形的中位线定理和相似三角形的性质和判定,能求出DE=BC和△DOE∽△BOC是解此题的关键.
21、
【解析】
根据旋转的性质求出点的坐标即可.
【详解】
如图,将点B绕点(坐标原点)按逆时针方向旋转后,得到点
点的坐标为
故答案为:.
本题考查了坐标点的旋转问题,掌握旋转的性质是解题的关键.
22、(3,0)
【解析】
y=0,即可求出x的值,即可求解.
【详解】
解:当y=0时,有﹣2x+6=0,
解得:x=3,
∴一次函数y=﹣2x+6的图象与x轴的交点坐标是(3,0).
故答案为:(3,0).
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
23、2
【解析】
作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.想办法求出MK,再证明MN=4MK即可解决问题;
【详解】
解:如图,作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.
由题意四边形DCEC′是正方形,△DGA′是等腰直角三角形,
∴DG=GA′=3,AG=AD﹣DG=9,设AM=MA′=x,
在Rt△MGA′中,x2=(9﹣x)2+32,
∴x=5,AA′=,
∵sin∠MAK=,
∴ ,
∴MK=,
∵AM∥OA′,AK=KA′,
∴MK=KO,
∵BN∥HA′∥AD,DA′=EA′,
∴MO=ON,
∴MN=4MK=2,
故答案为2.
本题考查翻折变换、正方形的性质.矩形的性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.
二、解答题(本大题共3个小题,共30分)
24、(1),17,17;(2)众数.
【解析】
(1)根据平均数、中位数和众数的求法,进行计算,即可得到答案;
(2)因为众数最具有代表性,所以选择众数.
【详解】
解:(1)这组数据的平均数为=,
中位数为=17,
众数为17;
故答案为:,17,17;
(2)用众数作为他们年龄的代表值较好.
本题考查平均数、中位数和众数,解题的关键是掌握平均数、中位数和众数的求法.
25、(1)40;(2)详见解析,72°;(3)420人.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)用1200乘以样本中最想去B景点的人数所占的百分比即可.
【详解】
解:(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
(3)1200×=420,
所以估计“最想去景点B“的学生人数为420人.
故答案为(1)40;(2)图形见解析,72°;(3)420人.
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
26、(1)A(1,3),B(-3,3),C(-3,-1);(2)P的坐标(-3,1).
【解析】
(1)利用正方形的性质即可解决问题;
(2)根据中点坐标公式计算即可.
【详解】
解:(1)∵正方形ABCD的边长为4,AD∥y轴,D(1,-1).
∴A(1,3),B(-3,3),C(-3,-1),
(2)∵BP=BC=2,B(-3,3),C(-3,-1),
∴BC中点P的坐标(-3,1).
点睛:本题考查正方形的性质、坐标与图形的性质、中点坐标公式等知识,解题的关键是熟练掌握点的位置与坐标的关系,记住中点坐标公式,属于基础题.
题号
一
二
三
四
五
总分
得分
2024-2025学年上海市静安区名校数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年上海市静安区名校数学九年级第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年上海民办日日学校九上数学开学学业水平测试试题【含答案】: 这是一份2024-2025学年上海民办日日学校九上数学开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。