2025届陕西省西安市西安交大阳光中学数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件中,属于必然事件的是( )
A.某校初二年级共有480人,则至少有两人的生日是同一天
B.经过路口,恰好遇到红灯
C.打开电视,正在播放动画片
D.抛一枚硬币,正面朝上
2、(4分)一次函数与的图象如图所示,则下列结论①k<0;②a>0;③不等式x+a
3、(4分)13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差B.众数C.平均数D.中位数
4、(4分)如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:
则关于甲、乙两人的作法,下列判断正确的为( )
A.仅甲正确B.仅乙正确C.甲、乙均正确D.甲、乙均错误
5、(4分)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是 ( )
A.矩形B.直角梯形C.菱形D.正方形
6、(4分)已知一个多边形的内角和等于900º,则这个多边形是( )
A.五边形B.六边形C.七边形D.八边形
7、(4分)在一次编程比赛中,8位评委给参赛选手小李的打分如下:
9.0,9.0,9.1 ,10.0 ,9.0,9.1,9.0,9.1.
规定去掉一个最高分和一个最低分后的平均值做为选手的最后得分.小李的最后得分是( )
A.9.0B.9.1C.9.1D.9.3
8、(4分)如果小磊将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若代数式的值比的值大3,则的值为______.
10、(4分)化简二次根式的结果是______.
11、(4分)一个多边形的内角和与外角和的比是4:1,则它的边数是 .
12、(4分)已知关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,则m的取值范围是_____.
13、(4分)甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形是平行四边形,、是对角线上的两个点,且.求证:.
15、(8分)已知:关于的方程.
(1)不解方程,判断方程的根的情况;
(2)若为等腰三角形,腰,另外两条边是方程的 两个根,求此三角形的周长.
16、(8分)珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.
(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;
(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.
17、(10分)某校八年级为庆祝中华人民共和国建国70周年,准备举行唱红歌、颂经典活动.八年级(2)班积极准备,需购买文件夹若干,某文具店有甲、乙两种文件夹.
(1)若该班只购买甲种文件夹,且购买甲种文件夹的花费(单位:元)与其购买数量(单位:件)满足一次函数关系,若购买20个,需花费180元;若购买30个,需花费260元.该班若需购买甲种文件夹60件,求需花费多少元?
(2)若该班购买甲,乙两种文件夹,那么甲种文件夹的单价比乙种文件夹的单价贵2元,若用240元购买甲种文件夹的数量与用180元购买乙种文件夹的数量相同.求该文具店甲乙两种文件夹的单价分别是多少元?
18、(10分)阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).
阅读时间分组统计表
请结合以上信息解答下列问题:
(1)求a,b,c的值;
(2)补全“阅读人数分组统计图”;
(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要____________元钱.
20、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
21、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于的二元一次方程组的解是______ .
22、(4分)反比例函数y=的图像在其每一象限内,y随x的增大而减小,则k的值可以是______.(写出一个数值即可)
23、(4分)如图,,两条直线与这三条平行线分别交于点、、和、、.已知,,,的长为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F. ①求△COF的面积;
②在x轴上是否存在点P,使S△OCP=S△COF?若存在,求出点P的坐标;若不存在,请说明理由.
25、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数y=x的图象交于点C(m,4)
(1)求m的值及一次函数y=kx+b的表达式;
(2)观察函数图象,直接写出关于x的不等式x≤kx+b的解集;
(3)若P是y轴上一点,且△PBC的面积是8,直接写出点P的坐标.
26、(12分)一个“数值转换机”如图所示,完成下表并回答下列问题:
(1)根据上述计算你发现了什么规律?
(2)请说明你发现的规律是正确的.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】A. 某校初二年级共有480人,则至少有两人的生日是同一天;属于必然事件;
B. 经过路口,恰好遇到红灯;属于随机事件;
C. 打开电视,正在播放动画片;属于随机事件;
D. 抛一枚硬币,正面朝上;属于随机事件。
故选A.
2、A
【解析】
根据一次函数的性质对①②进行判断;根据一次函数与一元一次不等式的关系,利用两函数图象的位置对③④进行判断,联立方程解答即可.
【详解】
∵一次函数的图象经过第二、四象限,
∴k<0,所以①正确;
∵一次函数的图象与y轴的交点在x轴下方,
∴a<0,所以②错误;
∵x3时,一次函数=kx+b的图象都在函数=x+a的图象上方,
∴不等式kx+bx+a的解集为x3,所以③正确;
∵y=3+a,y=3k+b
a=y−3,b=y−3k,
∴a−b=3k−3,故④正确;
故选:A
此题考查一次函数与一元一次不等式,解题关键在于利用一次函数的性质
3、D
【解析】
由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.
【详解】
共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.
我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.
故选D.
本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
4、C
【解析】
试题解析:根据甲的作法作出图形,如下图所示.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵EF是AC的垂直平分线,
在和中,
∴≌,
又∵AE∥CF,
∴四边形AECF是平行四边形.
∴四边形AECF是菱形.
故甲的作法正确.
根据乙的作法作出图形,如下图所示.
∵AD∥BC,
∴∠1=∠2,∠6=∠7.
∵BF平分,AE平分
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∵AF∥BE,且
∴四边形ABEF是平行四边形.
∵
∴平行四边形ABEF是菱形.
故乙的作法正确.
故选C.
点睛:菱形的判定方法:有一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边相等的平行四边形是菱形.
5、A
【解析】
解:如图,
AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.
∵E、F、G、H分别为各边的中点,
∴EF∥AC,GH∥AC,EH∥BD,FG∥BD(三角形的中位线平行于第三边),
∴四边形EFGH是平行四边形(两组对边分别平行的四边形是平行四边形),
∵AC⊥BD,EF∥AC,EH∥BD,
∴∠EMO=∠ENO=90°,
∴四边形EMON是矩形(有三个角是直角的四边形是矩形),
∴∠MEN=90°,
∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).
故选:A.
6、C
【解析】
试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.
考点:多边形的内角和定理.
7、B
【解析】
先去掉这8个数据中的最大数和最小数,再计算剩余6个数据的平均数即可.
【详解】
解:题目中8个数据的最高分是10.0分,最低分是9.0分,则小李的最后得分=(9.0+9.1+9.0+9.1+9.0+9.1)÷6=9.1分.
故选:B.
本题考查的是平均数的计算,正确理解题意、熟知平均数的计算方法是解题关键.
8、A
【解析】
解:阴影部分的面积为2+4=6 ∴镖落在阴影部分的概率为=.
考点:几何概率.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或2;
【解析】
根据题意列出方程,求出方程的解即可得到x的值.
【详解】
解:根据题意得:x2+4x-1-3x2+2x=3,即x2-3x+2=0,
分解因式得:(x-1)(x-2)=0,
解得:x1=1,x2=2,
故答案为:1或2.
本题考查解一元二次方程-因式分解法,熟练掌握各种解法是解本题的关键.
10、
【解析】
利用二次根式的性质化简.
【详解】
=.
故选为:.
考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
11、1.
【解析】
多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:根据题意,得
(n﹣2)•180=4360,
解得:n=1.
则此多边形的边数是1.
故答案为1.
12、m<2且m≠1.
【解析】
根据一元二次根的判别式及一元二次方程的定义求解.
【详解】
解:∵关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,
∴m-1≠0,且△>0,即4-4(m-1)>0,解得m<2,
∴m的取值范围是:m<2且m≠1.
故答案为:m<2且m≠1.
本题考查根的判别式及一元二次方程的定义,掌握公式正确计算是解题关键.
13、乙.
【解析】
根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.
【详解】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案是:乙.
考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
先根据平行四边形的性质得,,则,再证明得到AE=CF.
【详解】
证明:∵四边形为平行四边形
∴,
∴
∵
∴
∴
本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.
15、(1)无论为何值,该方程总有两个不相等的实数根;(2)此三角形的周长为或.
【解析】
(1)根据判别式即可求出答案.
(2)由题意可知:该方程的其中一根为5,从而可求出m的值,最后根据m的值即可求出三角形的周长;
【详解】
解:(1),
无论为何值,该方程总有两个不相等的实数根
(2),为等腰三角形,另外两条边是方程的根,
是方程的根.
将代入原方程,得:,解得:.
当时,原方程为,解得:,
能够组成三角形,
该三角形的周长为;
当时,原方程为,解得:,
,能够组成三角形,
该三角形的周长为.
综上所述:此三角形的周长为或.
本题考查一元二次方程,等腰三角形的定义,三角形三边的关系,解题的关键是熟练运用根与系数的关系,本题属于中等题型.
16、(1)当选择方案①时,y=144x+2800;当选择方案②时,y=204x+2380;(2)故当0<x<7时,选择方案②;当x=7时,两种方案费用一样;当x>7时,选择方案①
【解析】
(1)根据题意分别列出两种方案的收费方案的函数关系式;
(2)由(1)找到临界点分类讨论即可.
【详解】
(1)当选择方案①时,y=350×8+0.6×240x=144x+2800
当选择方案②时,y=(350×8+240)x×0.85=204x+2380
(2)当方案①费用高于方案②时
144x+2800>204x+2380
解得x<7
当方案①费用等于方案②时
144x+2800=204x+2380
解得x=7
当方案①费用低于方案②时
144x+2800<204x+2380
解得x>7
故当0<x<7时,选择方案②
当x=7时,两种方案费用一样.
当x>7时,选择方案①
本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.
17、(1)买60件需要花费:(元);(2)甲种文件夹每件8元,乙种文件夹每件6元.
【解析】
(1)设一次函数解析式,根据题意列方程组即可;(2)该文具店甲乙两种文件夹的单价分别是x元和(x-2)元,根据题意列方程组即可.
【详解】
解:(1)设一次函数,
∴,
解得:,
∴一次函数的解析式为.
∴购买60件需要花费:(元).
(2)设甲种文件夹每件元,则乙种文件夹每件元.
解得:.
经检验:是原方程的解,且符合题意,
(元)
答:甲种文件夹每件8元,乙种文件夹每件6元.
本题考查了一次函数的应用,分式方程的应用,正确理解题意是解题的关键.
18、 (1)20,200,40;(2)补全图形见解析;(3) 24%.
【解析】
分析:(1)根据D类的人数是140,所占的比例是28%,即可求得总人数,然后根据百分比的意义求得c的值,同理求得A、B两类的总人数,则a的值即可求得:进而求得b的值;
(2)根据(1)的结果即可作出;
(3)根据百分比的定义即可求解.
详解:(1)由图表可知,调查的总人数为 140÷28%=500(人),
∴b=500×40%=200,
c=500×8%=40,
则a=500-(100+200+140+40)=20,
(2)补全图形如图所示.
(3)由(1)可知×100%=24% .
答:估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比为24%.
点睛:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题
一、填空题(本大题共5个小题,每小题4分,共20分)
19、612.
【解析】
先由勾股定理求出BC的长为12m,再用(AC+BC)乘以2乘以18即可得到答案
【详解】
如图,∵∠C=90,AB=13m,AC=5m,
∴BC==12m,
∴(元),
故填:612.
此题考查勾股定理、平移的性质,题中求出地毯的总长度是解题的关键,地毯的长度由平移可等于楼梯的垂直高度和水平距离的和,进而求得地毯的面积.
20、y=2x-1
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=2x+b.
把(5,1)代入直线解析式得1=2×5+b,
解得 b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.
本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
21、
【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
解:∵函数y=ax+b和y=kx的图象的交点P的坐标为(1,1),
∴关于的二元一次方程组的解是.
故答案为.
本题考查一次函数与二元一次方程组的关系,学生们认真认真分校即可.
22、1
【解析】
∵反比例函数y=的图象在每一象限内,y随x的增大而减小,
∴,解得.
∴k可取的值很多,比如:k=1.
23、
【解析】
根据平行线分线段成比例定理得到比例式,代入计算即可.
【详解】
解:∵l1∥l2∥l3,
∴,即,
解得,EF=,
故答案为:.
本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)E(8,0);
(2)y=﹣x+6
(3)①54;②点P的坐标为(6,0)或(﹣6,0).
【解析】
(1)根据折叠的性质知CE=CB=1.在在直角△COE中,由勾股定理求得OE=8;
(2)根据OC=6知C(0,6),由折叠的性质与勾股定理,求得D(1,),利用待定系数法求CD所在直线的解析式;
(3)①根据F(18,0),即可求得△COF的面积;②设P(x,0),依S△OCP=S△CDE得×OP×OC=×54,即×|x|×6=18,求得x的值,即可得出点P的坐标.
【详解】
(1)如图,
∵四边形ABCD是长方形,
∴BC=OA=1,∠COA=90°,
由折叠的性质知,CE=CB=1,
∵OC=6,
∴在直角△COE中,由勾股定理得OE==8,
∴E(8,0);
(2)设CD所在直线的解析式为y=kx+b(k≠0),
∵C(0,6),
∴b=6,
设BD=DE=x,
∴AD=6-x,AE=OA-OE=2,
由勾股定理得AD2+AE2=DE2
即(6-x)2+22=x2,
解得x=,
∴AD=6-=,
∴D(1,),
代入y=kx+6 得,k=-,
故CD所在直线的解析式为:y=-x+6;
(3)①在y=-x+6中,令y=0,则x=18,
∴F(18,0),
∴△COF的面积=×OF×OC=×18×6=54;
②在x轴上存在点P,使得S△OCP=S△COF,
设P(x,0),依题意得
×OP×OC=×54,即×|x|×6=18,
解得x=±6,
∴在x轴上存在点P,使得S△OCP=S△COF,点P的坐标为(6,0)或(-6,0).
本题属于四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理以及待定系数法求一次函数的解析式的综合应用.解答此题时注意坐标与图形的性质的运用以及方程思想的运用.
25、(1)y=x+2;(2)x≤3;(3)P 的坐标为(0,)或(0,﹣).
【解析】
(1)把点C(m,4)代入正比例函数y=x即可得到m的值,把点A和点C的坐标代入y=kx+b求得k,b的值即可;
(2)根据图象解答即可写出关于x的不等式x≤kx+b的解集;
(3)点C的坐标为(3,4),说明点C到y轴的距离为3,根据△BPC的面积为8,求得BP的长度,进而求出点P的坐标即可.
【详解】
(1)∵点C(m,4)在正比例函数的y=x图象上,
∴m=4,
∴m=3,
即点C坐标为(3,4),
∵一次函数 y=kx+b经过A(﹣3,0)、点C(3,4)
∴,
解得:,
∴一次函数的表达式为:y=x+2;
(2)由图象可得不等式x≤kx+b的解为:x≤3;
(3)把x=0代入y=x+2得:y=2,
即点B的坐标为(0,2),
∵点P是y轴上一点,且△BPC的面积为8,
∴×BP×3=8,
∴PB=,
又∵点B的坐标为(0,2),
∴PO=2+=,或PO=-+2=-,
∴点P 的坐标为(0,)或(0,﹣).
本题考查了待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,分析图象并结合题意列出符合要求的等式是解题的关键.
26、(1)无论输入为多少,输出的值均为;(2)见详解
【解析】
(1)根据题中的“数值转换机”程序代入数值计算即可;
(2)根据题中的“数值转换机”程序得到化简即可得到结论.
【详解】
(1)无论输入为多少,输出的值均为.
(2)
此题考查了分式的混合运算,熟练掌握分式的混合运算顺序和因式分解是解决问题的关键.
题号
一
二
三
四
五
总分
得分
组别
阅读时间x(h)
人数
A
0≤x<10
a
B
10≤x<20
100
C
20≤x<30
b
D
30≤x<40
140
E
x≥40
c
输入
输出
输入
输出
2025届陕西省西安市长安中学数学九上开学学业水平测试试题【含答案】: 这是一份2025届陕西省西安市长安中学数学九上开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届陕西省西安市交大附中九上数学开学教学质量检测试题【含答案】: 这是一份2025届陕西省西安市交大附中九上数学开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届陕西省西安市航天中学数学九上开学质量检测试题【含答案】: 这是一份2025届陕西省西安市航天中学数学九上开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。