山西省泽州县晋庙铺镇拦车初级中学校2024-2025学年九年级数学第一学期开学联考试题【含答案】
展开
这是一份山西省泽州县晋庙铺镇拦车初级中学校2024-2025学年九年级数学第一学期开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,表示y是x的正比例函数的是( ).
A.B.C.D.
2、(4分)下列式子从左到右的变形中,属于因式分解的是( )
A.102-5=5(2-1)B.(+y) =+
C.2-4+4=(-4)+4D.2-16+3=(-4)(+4)+3
3、(4分)不等式组的解集为( )
A.x>-1B.x<3C.x<-1或x>3D.-1<x<3
4、(4分)若与最简二次根式是同类二次根式,则m的值为( )
A.7B.11C.2D.1
5、(4分)如图,在菱形ABCD中,一动点P从点B出发,沿着B→C→D→A的方向匀速运动,最后到达点A,则点P在匀速运动过程中,△APB的面积y随时间x变化的图象大致是( )
A.B.
C.D.
6、(4分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )
A.0.1B.0.17C.0.33D.0.4
7、(4分)﹣3x<﹣1的解集是( )
A.x<B.x<﹣C.x>D.x>﹣
8、(4分)若点 , 都在反比例函数 的图象上,则与的大小关系是
A.B.C.D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,那么________.
10、(4分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
11、(4分)若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.
12、(4分)如图,在平面直角坐标系中,直线y=x-1与矩形OABC的边BC、OC分别交于点E、F,已知OA=3,OC=4,则的面积是_________.
13、(4分)一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚,若梯子的顶端下滑,则梯足将滑动______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.
(1)当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
15、(8分)化简求值:(﹣1)÷,其中a=2﹣ .
16、(8分)学海书店购一批故事书进行销售,其进价为每本40元,如果按每本故事书50元进行出售,每月可以售出500本故事书,后来经过市场调查发现,若每本故事书涨价1元,则故事书的销量每月减少20本.
(1)若学海书店要保证每月销售此种故事书盈利6000元,同时又要使购书者得到实惠,则每本故事书需涨价多少元;
(2)若使该故事书的月销量不低于300本,则每本故事书的售价应不高于多少元?
17、(10分)如图1,点是正方形边上任意一点,以为边作正方形,连接,点是线段中点,射线与交于点,连接.
(1)请直接写出和的数量关系和位置关系.
(2)把图1中的正方形绕点顺时针旋转,此时点恰好落在线段上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.
(3)把图1中的正方形绕点顺时针旋转,此时点、恰好分别落在线段、 上,连接,如图3,其他条件不变,若,,直接写出的长度.
18、(10分)如图,已知直线与直线相交于点.
(1)求、的值;
(2)请结合图象直接写出不等式的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若最简二次根式与是同类二次根式,则=_______.
20、(4分)因式分解:=______.
21、(4分)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,则下列四个结论:①c>0; ②2a+b=0; ③b2-4ac>0; ④a-b+c>0;正确的是_____.
22、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.
23、(4分)用反证法证明:“四边形中至少有一个角是直角或钝角”时,应假设________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.
(1)求第一次每个笔记本的进价是多少?
(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?
25、(10分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).
(1)求该厂第2个月的发电量及今年下半年的总发电量;
(2)求y关于x的函数关系式;
(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?
26、(12分)为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量 与药物在空气中的持续时间成正比例;燃烧后,与成反比例(如图所示).现测得药物分钟燃完,此时教室内每立方米空气含药量为.根据以上信息解答下列问题:
(1)分别求出药物燃烧时及燃烧后 关于的函数表达式.
(2)当每立方米空气中的含药量低于 时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?
(3)当室内空气中的含药量每立方米不低于 的持续时间超过分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据正比例函数的定义来判断:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
【详解】
A、该函数不符合正比例函数的形式,故本选项错误.
B、该函数是y关于x的正比例函数,故本选项正确.
C、该函数是y关于x的一次函数,故本选项错误.
D、该函数是y2关于x的函数,故本选项错误.
故选B.
主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
2、A
【解析】
因式分解是将一个多项式转化成几个代数式乘积的形式,据此定义进行选择即可.
【详解】
A.符合定义且运算正确,所以是因式分解,符合题意;
B.是单项式乘多项式的运算,不是因式分解,不符合题意;
C.因为,所以C不符合题意;
D.不符合定义,不是转换成几个代数式乘积的形式,不符合题意;
综上所以答案选A.
本题考查的是因式分解的定义,熟知因式分解是将式子转化成几个代数式乘积的形式是解题的关键.
3、D
【解析】
分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
详解:解不等式3−2x−1,
解不等式x−2
相关试卷
这是一份江苏省淮安市泾口镇初级中学2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省颍上六十铺中学2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山西省泽州县联考九上数学开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。