![山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16291763/0-1729904753249/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16291763/0-1729904753300/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16291763/0-1729904753327/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】
展开
这是一份山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知x=1是一元二次方程的解,则b的值为( )
A.0B.1C.D.2
2、(4分)如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是( )
A.当销售量为4台时,该公司赢利4万元B.当销售量多于4台时,该公司才开始赢利
C.当销售量为2台时,该公司亏本1万元D.当销售量为6台时,该公司赢利1万元
3、(4分)一个直角三角形的两边长分别为,则第三边长可能是( )
A.B.C.或2D.
4、(4分)下列定理中,没有逆定理的是( )
A.对顶角相等B.同位角相等,两直线平行
C.直角三角形的两锐角互余D.直角三角形两直角边平方和等于斜边的平方
5、(4分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )
A.9B.12C.9D.18
6、(4分)如图,点P是正方形内一点,连接并延长,交于点.连接,将绕点顺时针旋转90°至,连结.若,,,则线段的长为( )
A.B.4C.D.
7、(4分)一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )
A.B.13C.6D.25
8、(4分)在一次英语单词听写比赛中共听写了16个单词,每听写正确1个得1分,最后全体参赛同学的听写成绩统计如下表:
则听写成绩的众数和中位数分别是( ).
A.15,14B.15,15
C.16,15D.16,14
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.
10、(4分)命题“全等三角形的面积相等”的逆命题是__________
11、(4分)关于x的方程有解,则k的范围是______.
12、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.
13、(4分)分解因式:__________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,梯形ABCD中,AB//CD,AD=BC,延长AB到E,使BE=DC,连结AC、CE.求证AC=CE.
15、(8分)某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.
(1)求购买一个甲种足球、一个乙种足球各需多少元?
(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?
16、(8分)解下列方程:
(1); (2).
17、(10分)已知:如图,在中,延长到,使得.连结,.
(1)求证:;
(2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).
18、(10分)某校为了选拔学生参加区里“五好小公民”演讲比赛,对八年级一班、二班提前选好的各10名学生进行预选(满分10分),绘制成如下两幅统计表:
表(1):两班成绩
表(2):两班成绩分析表
(1)在表(2)中填空,a=________,b=________,c=________.
(2)一班、二班都说自己的成绩好,你赞同谁的说法?请给出两条理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)平行四边形ABCD中,若,=_____.
20、(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.
21、(4分)已知菱形ABCD的两条对角线长分别为12和16,则这个菱形ABCD的面积S=_____.
22、(4分)如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.
23、(4分)若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某地至北京的高铁里程约为600km,甲、乙两人从此地出发,分别乘坐高铁A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢50km/h,A车的行驶时间比B车的行驶时间多20%,B车的行驶的时间为多少小时?
25、(10分)如图,在中,点是边上一个动点,过点作直线,设交的平分线于点,交的外角平分线于点.
(1)探究与的数量关系并加以证明;
(2)当点运动到上的什么位置时,四边形是矩形,请说明理由;
(3)在(2)的基础上,满足什么条件时,四边形是正方形?为什么?
26、(12分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写 的英语水平测试,他们各项的成绩(百分制)如下:
(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照 3∶4∶2∶1 的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看, 应该录取谁?
(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照 1∶2∶3∶4 的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看, 应该录取谁?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一元二次方程解的定义,把x=1代入x1+bx+1=0得关于b的一次方程,然后解一次方程即可.
【详解】
解:把x=1代入x1+bx+1=0
得1+b+1=0,解得b=-1.
故选:C.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
2、A
【解析】
利用图象交点得出公司盈利以及公司亏损情况.
【详解】
解:A、当销售量为4台时,该公司赢利0万元,错误;
B、当销售量多于4台时,该公司才开始赢利,正确;
C、当销售量为2台时,该公司亏本1万元,正确;
D、当销售量为6台时,该公司赢利1万元,正确;
故选A.
此题主要考查了一次函数的应用,熟练利用数形结合得出是解题关键.
3、C
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
解:设第三边为x,
①当8是直角边,则62+82=x2解得x=10,
②当8是斜边,则62+x2=82,解得x=2 .
∴第三边长为10或2.
故选:C.
本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
4、A
【解析】
分别写出四个命题的逆命题,逆命题是真命题的就是逆定理,不成立的就是假命题,就不是逆定理.
【详解】
A对顶角相等的逆命题是:如果两个角相等,那么这两个角是对顶角,逆命题是假命题,故没有逆定理;B同位角相等,两直线平行的逆命题是:两直线平行,同位角相等,是逆定理;C直角三角形两锐角互余的逆命题是:两锐角互余的三角形是直角三角形,是逆定理;D直角三角形两直角边平方和等于斜边的平方的逆定理是:两边的平方和等于第三边的平方的三角形是直角三角形,因此答案选择A.
本题考查的知识点是定理与逆定理,如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.
5、D
【解析】
根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的想知道的∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论
【详解】
ABCD为平行四边形,
所以,AD∥BC,
所以,∠AEG=∠EGF,
由折叠可知:∠GEF=∠DEF=60°,
所以,∠AEG=60°,
所以,∠EGF=60°,
所以,三有形EGF为等边三角形,
因为EF=6,
所以,△GEF的周长为18
此题考查翻折变换(折叠问题),平行四边形的性质,解题关键在于得出∠GEF=∠DEF=60°
6、D
【解析】
如图作BH⊥AQ于H.首先证明∠BPP′=90°,再证明△PHB是等腰直角三角形,求出PH、BH、AB,再证明△ABH∽△AQB,可得AB2=AH•AQ,由此即可解决问题。
【详解】
解:如图作于.
∵是等腰直角三角形,,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,AH=AP+PH=1+2=3,
在中,,
∵,,
∴,
∴,
∴,
故选:D.
本题考查正方形的性质、旋转变换、勾股定理的逆定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考常考题型.
7、A
【解析】
试题分析:∵直角三角形的两条直角边的长分别为5,12,
∴斜边为=13,
∵S△ABC=×5×12=×13h(h为斜边上的高),
∴h=.
故选A.
8、C
【解析】
根据表格中的数据可知16出现的次数最多,从而可以得到众数,一共20个数据,中位数是第10个和第11个的平均数,本题得以解决.
【详解】
由表格可得,16出现的次数最多,所以听写成绩的众数是16;
一共20个数据,中位数是第10个和第11个的平均数为5,即中位数为5,
故选:C.
考查了众数和中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.
【详解】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C
∴OB=3
∵经过原点的直线将图形分成面积相等的两部分
∴直线上方面积分是4
∴三角形ABO的面积是5
∴
∴
∴直线经过点
设直线l为
则
∴直线的函数关系式为
本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.
10、如果两个三角形的面积相等,那么是全等三角形
【解析】
首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.
【详解】
命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.
故答案为:如果两个三角形的面积相等,那么是全等三角形
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
11、k≤5
【解析】
根据关于x的方程有解,当时是一次方程,方程必有解,时是二元一次函数,则可知△≥0,列出关于k的不等式,求得k的取值范围即可.
【详解】
解:∵方程有解
①当时是一次方程,方程必有解,
此时
②当时是二元一次函数,此时方程有解
∴△=16-4(k-1)≥0
解得:k≤5.
综上所述k的范围是k≤5.
故答案为:k≤5.
本题考查了一元二次方程根的判别式的应用.
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
12、
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
解:∵在实数范围内有意义,
∴x-1≥2,
解得x≥1.
故答案为x≥1.
本题考查的是二次根式有意义的条件,即被开方数大于等于2.
13、
【解析】
提取公因式,即可得解.
【详解】
故答案为:.
此题主要考查对分解因式的理解,熟练掌握,即可解题.
三、解答题(本大题共5个小题,共48分)
14、证明见解析
【解析】
本题主要考查了等腰梯形的性质及全等三角形的判定方法. 根据等腰梯形的性质利用SAS判定△ADC≌△CBE,从而得到AC=CE
证明:在梯形ABCD中,AB∥DC,AD=BC,
∴四边形ABCD是等腰梯形,
∴∠CDA=∠BCD.
又∵DC∥AB,
∴∠BCD=∠CBE,
∵AD=BC,DC=BE,
∴△ADC≌△CBE,
故AC=CE.
15、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.
【解析】
(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;
(2)设这所学校再次购买a个甲种足球,根据题意列出不等式解答即可.
【详解】
(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,
根据题意,可得:=2×,
解得:x=50,
经检验x=50是原方程的解,
答:购买一个甲种足球需50元,购买一个乙种足球需70元;
(2)设这所学校再次购买a个甲种足球,(50-a)个乙种足球,
根据题意,可得:50-a≥a,
解得:a≤,
∵a为整数,
∴a≤1.
设总花费为y元,由题意可得,
y=50a+70(50-a)=-20a+2.
∵-20<0,
∴y随x的增大而减小,
∴a取最大值1时,y的值最小,此时50-a=3.
答:这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.
本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是根据题意列出方程.
16、(1)x=5,x=−2;(2)-2
【解析】
(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)因为2x+6=2(x+3),所以可得方程最简公分母为2(x+3),然后去分母转化为整式方程求解.
【详解】
(1)x(x−3)=10,
整理得:x−3x−10=0,
(x−5)(x+2)=0,
x−5=0,x+2=0,
x=5,x=−2;
(2)原方程的两边同时乘以2(x+3),
得:4+3(x+3)=7,
解这个方程,得x=−2,
检验:将x=−2代入2(x+3)时,该式等于2,
∴x=−2是原方程的根
此题考查解一元二次方程-因式分解法,解分式方程,掌握运算法则是解题关键
17、(1)详见解析;(2)详见解析
【解析】
(1)由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,易得BE∥CD,由于BE=AB可得BE=CD,推出四边形BECD是平行四边形,再运用平行四边形的性质解答即可;
(2)分别以C,E为圆心,以BE,BC的长为半径画弧,两弧交于一点F,则点F即为所求.
【详解】
(1)证明:∵中,
∴,.
又,
,,
四边形是平行四边形,
.
(2)如图:
本题考查了平行四边形的判定和性质,灵活运用平行四边形的判定和性质定理是解题的关键.
18、(1)8,8,7.5;(2)一班的成绩更好,理由见解析.
【解析】
(1)根据中位数、众数的定义及平均数的计算公式求解即可;(2)一班的成绩更好,从平均数、中位数、方差方面分析即可.
【详解】
解:(1)在5,5,5,8,8,8,8,9,10,10中,中位数为8;众数为8;
二班的平均分=(10+6+6+9+10+4+5+7+10+8)÷10=7.5.
(2)一班的成绩更好,理由一:一班的平均分比二班高;理由二:一班成绩的中位数比二班高.(答案不唯一,合理即可)
本题考查了中位数、众数、平均数及方差的知识,正确运用相关知识是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、120°
【解析】
根据平行四边形对角相等求解.
【详解】
平行四边形ABCD中,∠A=∠C,又,
∴∠A=120°,
故填:120°.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.
20、1
【解析】
先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.
【详解】
解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,
∴持“赞成”意见的学生人数=100-30=70名,
∴全校持“赞成”意见的学生人数约=2400×=1(名).
故答案为:1.
本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.
21、1.
【解析】
根据菱形的性质,菱形的面积=对角线乘积的一半.
【详解】
解:菱形的面积是:.
故答案为1.
本题考核知识点:菱形面积. 解题关键点:记住根据对角线求菱形面积的公式.
22、48°
【解析】
根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.
【详解】
∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,
∴AC=DC,
∵∠CAB=66°,
∴∠CDA=66°,
∴∠ACD=180°-∠A-∠CDA=48°,
∴∠BCE=∠ACD=48°,
故答案为:48°.
本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.
23、1
【解析】
先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
【详解】
180°-144°=36°,
360°÷36°=1,
∴这个多边形的边数是1,
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
二、解答题(本大题共3个小题,共30分)
24、2
【解析】
设B车行驶x小时,则A行驶(1+20%)x小时,根据题意即可列出分式方程进行求解.
【详解】
解:设B车行驶x小时,则A行驶(1+20%)x小时.
由题意得
解得:x=2
经检验:x=2是原方程的解.
B车的行驶的时间为2小时.
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.
25、(1)OE=OF,理由见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由见解析;
【解析】
(1)由平行线的性质和角平分线定义得出∠OEC=∠OCE,∠OFC=∠OCF,根据“等角对等边”得出OE=OC,OF=OC,即可得出结论;
(2)由(1)得出的OE=OC=OF,点O运动到AC的中点时,则由OE=OC=OF=OA,证出四边形AECF是平行四边形,再证出∠ECF=90°即可;
(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,得出四边形AECF是正方形.
【详解】
(1)OE=OF,理由如下:
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠DCF,
∵CE平分∠BCA,CF平分∠ACD,
∴∠OCE=∠BCE,∠OCF=∠DCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴OE=OC,OF=OC,
∴OE=OF;
(2)解:当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又EO=FO,
∴四边形AECF为平行四边形,
又CE为∠ACB的平分线,CF为∠ACD的平分线,
∴∠BCE=∠ACE,∠ACF=∠DCF,
∴∠BCE+∠ACE+∠ACF+∠DCF=2(∠ACE+∠ACF)=180°,
即∠ECF=90°,
∴四边形AECF是矩形;
(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
∵MN∥BC,
当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
此题考查四边形综合题目,正方形和矩形的判定、平行四边形的判定、等腰三角形的判定、平行线的性质以及角平分线的定义,解题关键在于掌握各判定定理.
26、(1) 应该录取丙;(2) 应该录取甲;(3)应该录取乙
【解析】
(1)分别算出甲乙丙的平均数,比较即可;
(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;
(3) 由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.
【详解】
(1)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵80.5>80.25>80
∴应该录取丙
(2)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵82.1>81>79.1
∴应该录取甲
(3)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵81.6>80.1>78.8
∴应该录取乙.
本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
12
13
14
15
16
人数(个)
1
3
4
5
7
序号
1号
2号
3号
4号
5号
6号
7号
8号
9号
10号
一班(分)
5
8
8
9
8
10
10
8
5
5
二班(分)
10
6
6
9
10
4
5
7
10
8
班级
平均分
中位数
众数
方差
及格率
一班
7.6
a
b
3.44
30%
二班
c
7.5
10
4.45
40%
应试者
听
说
读
写
甲
82
86
78
75
乙
73
80
85
82
丙
81
82
80
79
相关试卷
这是一份山西省阳泉市名校2024年九年级数学第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省阳泉市城区2025届九上数学开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山西省晋中市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)