山西省晋中市2024年数学九上开学达标检测模拟试题【含答案】
展开
这是一份山西省晋中市2024年数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将方程x2+4x+3=0配方后,原方程变形为( )
A.B.C.D.
2、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
3、(4分)在解分式方程+=2时,去分母后变形正确的是( )
A.B.
C.D.
4、(4分)一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是( )
A.12B.13C.14D.12或14
5、(4分)已知分式方程,去分母后得( )
A.B.
C.D.
6、(4分)下列说法正确的是( )
A.同位角相等
B.同一平面内的两条不重合的直线有相交、平行和垂直三种位置关系
C.三角形的三条高线一定交于三角形内部同一点
D.三角形三条角平分线的交点到三角形三边的距离相等
7、(4分)如图,四边形ABCD中,对角线AC与BD相交于O,不能判定四边形ABCD是平行四边形的是( )
A.AB∥CD,AO=COB.AB∥DC,∠ABC=∠ADC
C.AB=DC,AD=BCD.AB=DC,∠ABC=∠ADC
8、(4分)如图,点在反比例函数的图象上,点在反比例函数的图象上,轴,连接,过点作轴于点,交于点,若,则的值为( )
A.﹣4B.﹣6C.﹣8D.﹣9
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果直线 y=kx+3 与两坐标轴围成三角形的面积为 3,则 k 的值为_____.
10、(4分)甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“
【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
【详解】
解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案为:>.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
11、-6
【解析】
把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.
12、
【解析】
根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP.
【详解】
解:∵BD=CD,AB=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴DN=AM= ,
又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
∴∠P=∠PAM,
∴△APM是等腰直角三角形,
∴AP=AM=1,
故答案为1.
本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
13、
【解析】
先提取公因式2x后,再用平方差公式分解即可;
【详解】
解: ==;
故答案为:;
本题主要考查了提公因式法与公式法的综合应用,掌握提公因式法与公式法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、当点在内时,成立,证明见解析;当点在外时,不成立,数量关系为.
【解析】
当点在内时(如图②),通过FD∥AB与AB=AC可知,FD=FC.即PD+PF=FC.要想FC+PE=AB,根据等量代换,只需要知道PE=AF,PE=AF可通过证明四边形AEPF是平行四边形,用对边相等得到;
当点在外时(如图③),类似于①可知FD=FC;同样可通过证明四边形AEPF是平行四边形,得到对边PE=AF,此时FD=PF-PD,所以数量关系上类似于①但不同于①,只是FD=PF-PD的区别.
【详解】
解:当点在内时,上述结论成立.
证明:∵,,∴四边形为平行四边形,
∴,∵,∴,
又∵,∴,∴,∴,
∴,即,
又∵,,
∴;
当点在外时,上述结论不成立,此时数量关系为.
证明:∵,,∴四边形为平行四边形,
∴,
∵,∴,
又∵,∴,∴,∴,
∴,即,
又∵,,
∴.
本题解题关键:运用平行四边形的判定和性质,等腰三角形的性质,结合多次等量代换,综合推理证明,特别注意的是点P在不同位置时,图形中线段的关系变化情况.
15、这块土地的面积为14m1
【解析】
试题分析: 连接AC,先利用勾股定理求AC,再利用勾股定理逆定理证△ACB为直角三角形,根据四边形ABCD的面积=△ABC面积-△ACD面积即可计算.
试题解析:
连接AC,
∵AD=4m,CD=3m,∠ADC=90°,
∴AC=5m,
△ACD的面积=×3×4=6(m²),
在△ABC中,
∵AC=5m,BC=11m,AB=13m,
∴AC²+BC²=AB²,
∴△ABC为直角三角形,且∠ACB=90°,
∴直角△ABC的面积=×11×5=30(m²),
∴四边形ABCD的面积=30−6=14(m²).
∴该花圃的面积是14m1.
16、(1)100+200x;(2)1.
【解析】
试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;
(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.
试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;
(2)根据题意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.
答:张阿姨需将每斤的售价降低1元.
考点:1.一元二次方程的应用;2.销售问题;3.综合题.
17、(1)第一批购入衬衫的单价为每件41元.(2)两笔生意中华联商场共赢利91261元.
【解析】
(1)设第一批购入的衬衫单价为x元/件,根据题目中的等量关系“第一批衬衫的数量×2=第二批衬衫的数量”可列方程,解方程即可.
(2)在(1)的基础上可求出两次进货的数量以及每件的单价,在这两笔生意中,华联商场共赢利分三部分,第一批衬衫的盈利和第二批衬衫两部分的盈利,根据每件利润×件数=总利润分别求出这三部分的盈利相加即可得在这两笔生意中,华联商场共赢利的钱数.
【详解】
(1)设第一批购入的衬衫单价为x元/件,根据题意得,
.
解得:x=41,经检验x=41是方程的解,
答:第一批购入衬衫的单价为每件41元.
(2)由(1)知,第一批购入了81111÷41=2111件.
在这两笔生意中,华联商场共赢利为:
2111×(58﹣41)+(2111×2-151)×(58﹣44)+151×(58×1.8﹣44)=91261元.
答:两笔生意中华联商场共赢利91261元.
考点:分式方程的应用.
18、原式=
【解析】
试题分析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.
试题解析:原式= ===
解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、1、1、2,∵不等式有意义时x≠±1、1,∴x=2,则原式==1.
点睛:本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、两个角相等
【解析】
交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.
【详解】
解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,
题设是:两个角相等
故答案为:两个角相等.
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
20、7.2
【解析】
试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.
解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,
∴BC2=AB2+AC2,
∴∠A=90°,
∵MD⊥AB,ME⊥AC,
∴∠A=∠ADM=∠AEM=90°,
∴四边形ADME是矩形,
∴DE=AM,
当AM⊥BC时,AM的长最短,
根据三角形的面积公式得:AB×AC=BC×AM,
∴6×1=10AM,
AM=4.1(cm),
即DE的最小值是4.1cm.
故答案为4.1.
考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.
21、8
【解析】
根据方差公式S2= 计算即可得出答案.
【详解】
解:∵ 数据为1,3,5,7,9,
∴平均数为:=5,
∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2] =8.
故答案为8.
本题考查方差的计算,熟记方差公式是解题关键.
22、1.
【解析】
根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
【详解】
∵菱形ABCD的顶点C(-1,0),点B(0,2),
∴点A的坐标为(-1,4),点D坐标为(-2,2),
∵D(n,2),
∴n=-2,
当y=4时,-x+5=4,
解得x=2,
∴点A向右移动2+1=3时,点A在MN上,
∴m的值为3,
∴m+n=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
23、
【解析】
根据方程的系数结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论,
【详解】
解:∵方程(k为常数)的两个不相等的实数根,
∴>0,且,
解得:k
相关试卷
这是一份吉林省延边2025届九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安庆市2024年九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山西省晋中市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。