年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省沾化县2025届数学九上开学监测模拟试题【含答案】

    山东省沾化县2025届数学九上开学监测模拟试题【含答案】第1页
    山东省沾化县2025届数学九上开学监测模拟试题【含答案】第2页
    山东省沾化县2025届数学九上开学监测模拟试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省沾化县2025届数学九上开学监测模拟试题【含答案】

    展开

    这是一份山东省沾化县2025届数学九上开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)为了解某学校七至九年级学生每天的体育锻炼时间,下列抽样调查的样本代表性较好的是( )
    A.选择七年级一个班进行调查
    B.选择八年级全体学生进行调查
    C.选择全校七至九年级学号是5的整数倍的学生进行调查
    D.对九年级每个班按5%的比例用抽签的方法确定调查者
    2、(4分)将直线y=-2x-3怎样平移可以得到直线y=-2x的是( )
    A.向上平移2个单位B.向上平移3个单位
    C.向下平移2个单位D.向下平移3个单位
    3、(4分)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
    根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
    A.甲B.乙C.丙D.丁
    4、(4分)化简的结果是( )
    A.9B.-3C.D.3
    5、(4分)如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有( )
    A.2个B.3个C.4个D.5个
    6、(4分)若代数式有意义,则实数x的取值范围是
    A. B. C. D.且
    7、(4分)下列根式中,不是最简二次根式的是( )
    A.B.C.D.
    8、(4分)在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
    A.k>1B.k>0C.k≥1D.k<1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P'的坐标是_____.
    10、(4分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.
    11、(4分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.
    12、(4分)如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=______秒(s)时,点P、Q、C、D构成平行四边形.
    13、(4分)如图所示,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某学校计划在总费用元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.
    (1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.
    (2)请给出最节省费用的租车方案.
    15、(8分)已知三角形纸片ABC的面积为41,BC的长为1.按下列步骤将三角形纸片ABC进行裁剪和拼图:
    第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意取一点F,在线段BC上任意取一点H,沿FH将四边形纸片DBCE剪成两部分;
    第二步:如图2,将FH左侧纸片绕点D旋转110°,使线段DB与DA重合;将FH右侧纸片绕点E旋转110°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC面积相等的四边形纸片.

    图1 图2
    (1)当点F,H在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;
    (2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.
    16、(8分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
    (1)求证:AE=DF;
    (2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;
    (3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.
    17、(10分)如图,将绕点A按逆时针方向旋转,使点B落在BC边上的点D处,得.若,,求的度数.
    18、(10分)一组数据从小到大顺序排列后为:1,4,6,x,其中位数和平均数相等,求x的值。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知平行四边形的周长是24,相邻两边的长度相差4,那么相邻两边的长分别是_____.
    20、(4分)若,,则=___________.
    21、(4分)如果两个最简二次根式与能合并,那么______.
    22、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.
    23、(4分)如图,矩形ABCD中,,,CB在数轴上,点C表示的数是,若以点C为圆心,对角线CA的长为半径作弧交数轴的正半轴于点P,则点P表示的数是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在四边形ABCD中,AD⊥CD,BC⊥CD,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F。
    证明:(1)FC=AD;
    (2)AB=BC+AD。
    25、(10分)如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.
    26、(12分) “中华人民共和国道路交通管理条例”规定:小汽车在高速公路上的行驶速度不得超过120千米/小时,不得低于60千米/小时,如图,一辆小汽车在高速公路上直道行驶,某一时刻刚好行驶到“车速检测点”正前方60米处,过了3秒后,测得小汽车位置与“车速检测点”之间的距离为100米,这辆小汽车是按规定行驶吗?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    直接利用抽样调查必须具有代表性,进而分析得出答案.
    【详解】
    抽样调查的样本代表性较好的是:选择全校七至九年级学号是5的整数倍的学生进行调查,故选C.
    此题主要考查了抽样调查的可靠性,正确把握抽样调查的意义是解题关键.
    2、B
    【解析】
    根据上加下减,左加右减的平移原则,即可得出答案.
    【详解】
    解:根据上加下减的平移原则,直线y=-2x可以看作是由直线y=-2x-3向上平移3个单位得到的;
    故选B.
    本题考查一次函数图象与几何变换,属于基础题,关键是掌握上加下减,左加右减的平移原则.
    3、A
    【解析】
    首先比较平均数,平均数相同时选择方差较小的运动员参加.
    【详解】
    解:首先比较平均数:甲=丙>乙=丁,
    ∴从甲和丙中选择一人参加比赛,
    再比较方差:丙>甲
    ∴选择甲参赛,
    所以A选项是正确的.
    本题考查的是方差,熟练掌握方差的性质是解题的关键.
    4、D
    【解析】
    根据算术平方根的性质,可得答案.
    【详解】
    解:,故D正确,
    故选:D.
    本题考查了算术平方根的计算,熟练掌握算术平方根的性质是解题关键.
    5、C
    【解析】
    分情况,BC为腰,BC为底,分别进行判断得到答案即可
    【详解】
    以BC为腰时,以B为圆心画圆将会与AB有一个交点、以C为圆心画圆同样将会与AB有两个个交点;以BC为底时,做BC的垂直平分线将会与AB有一个交点,所以BC为边作等腰三角形在AB上可找到4个点,故选C
    本题主要考查等腰三角形的性质,充分理解基本性质能够分情况讨论是本题关键
    6、D
    【解析】
    根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1。故选D。
    7、C
    【解析】
    根据最简二次根式的概念即可求出答案.
    【详解】
    C.原式=2,故C不是最简二次根式,
    故选:C.
    此题考查最简二次根式,解题关键在于掌握其概念.
    8、A
    【解析】
    根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
    【详解】
    解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
    即可得k﹣1>0,
    解得k>1.
    故选A.
    【点评】
    本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(1,5)
    【解析】
    根据向右平移横坐标加,向上平移纵坐标加求解即可.
    【详解】
    解:∵点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P',
    ∴点P′的横坐标为-2+3=1,
    纵坐标为1+4=5,
    ∴点P′的坐标是(1,5).
    故答案为(1,5).
    本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    10、25°.
    【解析】
    在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.
    11、六
    【解析】
    n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.
    【详解】
    设多边形的边数为n,依题意,得:
    (n﹣2)•180°=2×360°,
    解得n=6,
    故答案为:六.
    本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.
    12、3或6
    【解析】
    根据点P的位置分类讨论,分别画出对应的图形,根据平行四边形的对边相等列出方程即可求出结论.
    【详解】
    解:当P运动在线段AD上运动时, AP=3t,CQ=t,
    ∴DP=AD-AP=12-3t,
    ∵四边形PDCQ是平行四边形,
    ∴PD=CQ,
    ∴12-3t=t,
    ∴t=3秒;
    当P运动到AD线段以外时,AP=3t,CQ=t,
    ∴DP=3t-12,
    ∵四边形PDCQ是平行四边形,
    ∴PD=CQ,
    ∴3t-12=t,
    ∴t=6秒,
    故答案为:3或6
    此题考查的是平行四边形与动点问题,掌握平行四边形的对应边相等和分类讨论的数学思想是解决此题的关键.
    13、10
    【解析】
    先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF的值.
    【详解】
    设BD=x,则CD=20−x,
    ∵△ABC是等边三角形,
    ∴∠B=∠C=60∘.
    ∴BE=cs60∘⋅BD=,
    同理可得,CF=,
    ∴BE+CF=+=10.
    本题考查等边三角形的性质,解题的关键是掌握等边三角形的性质.
    三、解答题(本大题共5个小题,共48分)
    14、(1)6,6,6;(2)租乙种客车2辆,甲种客车4辆.
    【解析】
    (1)根据师生总人数240人,以及所需租车数=人数÷载客量算出载客量最大的车所需辆数即可得租车总数最小值,再结合每辆车至少有一名老师即可租车数量最大值;
    (2)设租乙种客车x辆,根据师生总数240人以及总费用2300元即可列出关于x的不等式组,从而得出x范围,之后进一步求出租车方案即可.
    【详解】
    (1)∵(辆)……15(人),
    ∴为保证师生都有车坐,汽车总数不能小于6辆;
    又∵每辆车上至少有名教师,共有6名教师,
    ∴租车总数不可大于6,
    故答案为:6,6,6;
    (2)设租乙种客车x辆,
    则:,且,
    ∴,
    ∵是整数,
    ∴,或,
    设租车费用为y元,
    则,
    ∴当时,y最小,且,
    故租乙种客车2辆,甲种客车4辆时,所需费用最低.
    本题主要考查了一元一次不等式组在方案问题中的实际运用,熟练掌握相关概念是解题关键.
    15、21
    【解析】
    (1)利用旋转的旋转即可作出图形;
    (2)先求出的边长边上的高为,进而求出与间的距离为,再判断出最小时,拼成的四边形的周长最小,即可得出结论.
    【详解】
    (1)∵DE是△ABC的中位线,
    ∴四边形BDFH绕点D顺时针旋转,点B和点A重合,
    四边形CEFH绕点E逆时针旋转,点C和点A重合,
    ∴补全图形如图1所示,
    (2)∵△ABC的面积是41,BC=1,
    ∴点A到BC的距离为12,
    ∵DE是△ABC的中位线,
    ∴平行线DE与BC间的距离为6,
    由旋转知,∠DAH''=∠B,∠CAH'=∠C,
    ∴∠DAH''+∠BAC+∠CAH'=110°,
    ∴点H'',A,H'在同一条直线上,
    由旋转知,∠AEF'=∠CEF,
    ∴∠AEF'+∠CEF'=∠CEF+∠CEF'=110°,
    ∴点F,E,F'在同一条直线上,
    同理:点F,D,F''在同一条直线上,
    即:点F',F''在直线DE上,
    由旋转知,AH''=BH,AH'=CH,DF''=DF,EF'=EF,F''H''=FH=F'H',
    ∴F'F''=2DE=BC=H'H'',
    ∴四边形F'H'H''F''是平行四边形,
    ∴▱F'H'H''F''的周长为2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH,
    ∵拼成的所有四边形纸片中,其周长的最小时,FH最小,
    即:FH⊥BC,
    ∴FH=6,
    ∴周长的最小值为16+2×6=21,
    故答案为21.
    此题是四边形综合题,主要考查了旋转的旋转和作图,判断三点共线的方法,平行四边形的判断和性质,判断出四边形是平行四边形是解本题的关键.
    16、(1)证明见解析;(2)当t=10时,四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由见解析.
    【解析】
    (1)由已知条件可得RT△CDF中∠C=30°,即可知DF= CD=AE=2t;
    (2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;
    (3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.
    【详解】
    (1)∵Rt△ABC中,∠B=90°,∠A=60°,
    ∴∠C=90°−∠A=30°.
    又∵在Rt△CDF中,∠C=30°,CD=4t
    ∴DF=CD=2t,
    ∴DF=AE;
    (2)∵DF∥AB,DF=AE,
    ∴四边形AEFD是平行四边形,
    当AD=AE时,四边形AEFD是菱形,
    即60−4t=2t,解得:t=10,
    即当t=10时,四边形AEFD是菱形;
    (3)四边形BEDF不能为正方形,理由如下:
    当∠EDF=90°时,DE∥BC.
    ∴∠ADE=∠C=30°
    ∴AD=2AE
    ∵CD=4t,
    ∴DF=2t=AE,
    ∴AD=4t,
    ∴4t+4t=60,
    ∴t= 时,∠EDF=90°
    但BF≠DF,
    ∴四边形BEDF不可能为正方形。
    此题考查四边形综合题,解题关键在于得到DF= CD=AE=2t
    17、20°
    【解析】
    由旋转的性质可得∠AED=∠ACB=40°,∠BAD=∠DAE, AB=AD,AC=AE, 又因为DE∥AB,所以∠BAD=∠ADE,列出方程求解可得出∠BAD=60°,所以∠ACE=∠AEC =60°,∠DEC=∠AEC-∠AED=60°-40°=20°
    【详解】
    解:∵将△ABC绕点A按逆时针方向旋转后得△ADE,
    ∴∠AED=∠ACB=40°,∠BAD=∠DAE, AB=AD,AC=AE,
    ∴∠ABD=∠ADB,∠ACE=∠AEC,
    ∵DE∥AB,
    ∴∠BAD=∠ADE
    设∠BAD=x, ∠ABD=y,=z,可列方程组:

    解得:x=60°
    即∠BAD=60°
    ∴∠ACE=∠AEC =60°
    ∴∠DEC=∠AEC-∠AED=60°-40°=20°
    此题考查了旋转的性质以及平行线的性质.注意掌握旋转前后图形的对应关系以及方程思想的应用是关键.
    18、x=9
    【解析】
    根据这组数据的中位数和平均数相等,得出(4+6)÷2=(1+4+6+x)÷4,求出x的值.
    【详解】
    解:依题意可得:(4+6)÷2=(1+4+6+x)÷4,
    解得x=9,
    故答案为:9.
    此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4和1
    【解析】
    设短边为x,则长边为x+4,再利用周长为24作等量关系,即可列方程求解.
    【详解】
    ∵平行四边形周长为24,
    ∴相邻两边的和为12,
    ∵相邻两边的差是4,
    设短边为x,则长边为x+4
    ∴x+4+x=12
    ∴x=4
    ∴两边的长分别为:4,1.
    故答案为:4和1;
    主要考查了平行四边形的性质,即平行四边形的对边相等这一性质,并建立适当的方程是解题的关键.
    20、
    【解析】
    首先根据平方差公式进行变换,然后直接代入,即可得解.
    【详解】
    解:根据平方差公式,可得
    =
    将,,代入,得
    原式==
    故答案为.
    此题主要考查平方差公式的运用,熟练掌握即可解题.
    21、1
    【解析】
    ∵两个最简二次根式能合并,
    ∴ ,解得:a=1.
    故答案为1.
    22、504m2
    【解析】
    由OA =2n知OA = +1=1009,据此得出A A =1009-1=1008,据此利用三角形的面积公式计算可得.
    【详解】
    由题意知OA =2n,
    ∵2018÷4=504…2,
    ∴OA = +1=1009,
    ∴A A =1009-1=1008,
    则△O A A的面积是×1×1008=504m2
    此题考查规律型:数字变换,解题关键在于找到规律
    23、
    【解析】
    利用勾股定理求AC,再求出PO,从而求出P所表示的数.
    【详解】
    解:由勾股定理可得:AC=,
    因为,PC=AC,
    所以,PO=,
    所以,点P表示的数是.
    故答案为
    本题考核知识点:在数轴上表示无理数. 解题关键点:利用勾股定理求出线段长度.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析
    【解析】
    (1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.
    (2)根据线段垂直平分线的性质判断出AB=BF即可.
    【详解】
    (1)∵AD∥BC(已知),
    ∴∠ADC=∠ECF(两直线平行,内错角相等),
    ∵E是CD的中点(已知),
    ∴DE=EC(中点的定义).
    ∵在△ADE与△FCE中,

    ∴△ADE≌△FCE(ASA),
    ∴FC=AD(全等三角形的性质).
    (2)∵△ADE≌△FCE,
    ∴AE=EF,AD=CF(全等三角形的对应边相等),
    ∴BE是线段AF的垂直平分线,
    ∴AB=BF=BC+CF,
    ∵AD=CF(已证),
    ∴AB=BC+AD(等量代换).
    此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
    25、见解析
    【解析】
    试题分析:根据正方形的性质可得AD=DC,∠A=∠DCF=90°,再根据DE⊥DF得出∠1=∠2,从而说明三角形ADE和△CDF全等.
    试题解析:∵四边形ABCD是正方形, ∴ AD=CD ,∠A=∠DCF=90°
    又∵DF⊥DE, ∴∠1+∠3=∠2+∠3 ∴∠1=∠2
    ∴△DAE≌△DCE ∴DE=DF
    考点:(1)、正方形的性质;(2)、三角形全等判定
    26、这辆小汽车是按“中华人民共和国道路交通管理条例”规定行驶.̈
    【解析】
    根据勾股定理求出BC,求出速度,再比较即可.
    【详解】
    解:由勾股定理得,(米),
    (米/秒),
    ∵米/秒千米/时,而,
    ∴这辆小汽车是按“中华人民共和国道路交通管理条例”规定行驶.̈
    本题考查了勾股定理的应用,能求出BC的长是解此题的关键.
    题号





    总分
    得分
    甲种客车
    乙种客车
    载客量/(人/量)
    30
    租金/(元/辆)
    400
    280

    相关试卷

    山东省青岛市青大附中2025届九上数学开学监测模拟试题【含答案】:

    这是一份山东省青岛市青大附中2025届九上数学开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省莒县2024年九上数学开学监测模拟试题【含答案】:

    这是一份山东省莒县2024年九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省菏泽市九上数学开学监测模拟试题【含答案】:

    这是一份2025届山东省菏泽市九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map