山东省潍坊市安丘市职工子弟学校2024年数学九年级第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)把代数式因式分解,结果正确的是( )
A.B.C.D.
2、(4分)下列根式中属于最简二次根式的是( )
A.B.C.D.
3、(4分)下列各式:①,②,③,④中,最简二次根式有( )
A.1个B.2个C.3个D.4个
4、(4分)下列各命题的逆命题成立的是( )
A.全等三角形的对应角相等B.若两数相等,则它们的绝对值相等
C.若两个角是45,那么这两个角相等D.两直线平行,同位角相等
5、(4分)如图,在中,点、、分别在边、、上,且,.下列说法中不正确的是( )
A.四边形是平行四边形
B.如果,那么四边形是矩形.
C.如果平分,那么四边形是正方形.
D.如果且,那么四边形是菱形.
6、(4分)下列函数关系式中,y是x的反比例函数的是
A.B.C.D.
7、(4分)如图,四边形ABCD是菱形,圆O经过点A、C、D,与BC相交于点E,连接AC、AE.若,则( )
A.B.C.D.
8、(4分)若分式有意义,则x的取值范围是( )
A.x≠5B.x≠﹣5C.x>5D.x>﹣5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED=cm,则平行四边形ABCD的周长是_________.
10、(4分)设甲组数:,,,的方差为,乙组数是:,,,的方差为,则与的大小关系是_______(选择“>”、“<”或“=”填空).
11、(4分)如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有_____(只填序号).
12、(4分)若菱形的周长为14 cm,一个内角为60°,则菱形的面积为_____cm1.
13、(4分)分解因式:______.
三、解答题(本大题共5个小题,共48分)
14、(12分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:
(1)表中的a=______,b=______,c=______;
(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.
15、(8分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠. 书包每个定价20元,水性笔每支定价5元. 小丽和同学需买4个书包,水性笔若干支(不少于4支). 设购买费用为元,购买水性笔支.
(1)分别写出两种优惠方法的购买费用与购买水性笔支数之间的函数关系式;
(2)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
16、(8分)定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.
(1)如图,在平面直角坐标系中,点为坐标原点,以点为圆心,5为半径作圆,交轴的负半轴于点,求过点的圆 的切线的解析式;
(2)若抛物线()与直线()相切于点,求直线的解析式;
(3)若函数的图象与直线相切,且当时,的最小值为,求的值.
17、(10分)某校“六一”活动购买了一批A,B两种型号跳绳,其中A型号跳绳的单价比B型号跳绳的单价少9元,已知该校用2600元购买A型号跳绳的条数与用3500元购买B型号跳绳的条数相等.
(1)求该校购买的A,B两种型号跳绳的单价各是多少元?
(2)若两种跳绳共购买了200条,且购买的总费用不超过6300元,求A型号跳绳至少购买多少条?
18、(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.
20、(4分)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为______.
21、(4分)如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx<ax+4的解集为________.
22、(4分)将直线y=2x+1向下平移2个单位,所得直线的表达式是__________.
23、(4分)若,则__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线与轴交于点,与轴交于点,与直线交于点,点的横坐标为3.
(1)直接写出值________;
(2)当取何值时,?
(3)在轴上有一点,过点作轴的垂线,与直线交于点,与直线交于点,若,求的值.
25、(10分)某学校准备利用今年暑假将旧教学楼进行装修,并要在规定的时间内完成以保证秋季按时开学.现有甲、乙两个工程队,若甲工程队单独做正好可按期完成, 但费用较高;若乙工程队单独做则要延期 4 天才能完成,但费用较低.学校经过预 算,发现先由两队合作 3 天,再由乙队独做,正好可按期完成,且费用也比较合理. 请你算一算,规定完成的时间是多少天?
26、(12分)如图,在四边形中,,,,为的中点,连接.
(1)求证:四边形是菱形;
(2)连接,若平分,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据提公因式,平方差公式,可得答案.
【详解】
解:
=
=,
故选:C.
本题考查了因式分解,一提,二套,三检查,分解要彻底.
2、A
【解析】
根据最简二次根式的定义选择即可.
【详解】
、是最简二次根式,故本选项正确;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误.
故选:.
本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.
3、A
【解析】
先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.
【详解】
解:①,②,③,④(y≥0),
故其中的最简二次根式为①,共一个.
故选:A.
本题考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.
4、D
【解析】
先分别写出四个命题的逆命题,根据三角形全等的判定方法对A的逆命题进行判断;根据相反数的绝对值相等对B的逆命题进行判断;根据两个角相等,这两个角可为任意角度可对C的逆命题进行判断;根据平行线的判定定理对D的逆命题进行判断.
【详解】
A. “全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以A选项错误;
B. “若两数相等,则它们的绝对值相等”的逆命题为“若两数的绝对值相等,则这两数相等”,此逆命题为假命题,所以B选项错误;
C. “若两个角是45°,那么这两个角相等”的逆命题为“若两个角相等,你们这两个角是45°”,此逆命题为假命题,所以C选项错误;
D. “两直线平行,同位角相等”的逆命题为“同位角相等,两直线平行”,此逆命题为真命题,所以D选项正确.
故选D.
此题考查命题与定理,解题关键在于掌握掌握各性质定义.
5、C
【解析】
根据特殊的平行四边形的判定定理来作答.
【详解】
解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;
又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;
如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,
∴∠FAD=∠ADF,
∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;
如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.
故选:C.
本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定.
6、D
【解析】
根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),可以判定函数的类型.
【详解】
A. 是一次函数,故此选项错误;
B. 是正比例函数,故此选项错误;
C. 不是反比例函数,故此选项错误;
D. 是反比例函数,故此选项正确。
故选D.
本题考查反比例函数的定义,熟练掌握反比例函数的定义对选项进行判断是解题关键.
7、B
【解析】
根据菱形的性质得到∠ACB=∠DCB=(180°-∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论,
【详解】
解:∵四边形ABCD是菱形,∠D=78°,
∴∠ACB=∠DCB=(180°-∠D)=51°,
∵四边形AECD是圆内接四边形,
∴∠AEB=∠D=78°,
∴∠EAC=∠AEB−∠ACE=27°,
故选B.
本题主要考查了圆内接四边形的性质,菱形的性质,掌握这些性质是解题的关键.
8、A
【解析】
解:∵若分式有意义,
∴x﹣5≠0,∴x≠5;
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、15cm
【解析】
分析:由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE=3,即可求出AD的长,就能求出答案.
详解:∵四边形ABCD是平行四边形,∴AB=CD=3cm,AD=BC,AD∥BC,∴∠AEB=∠EBC, ∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∴AD=AE+DE=3+=4.5,∴AD=BC=4.5,∴平行四边形的周长是2(AB+BC)=2(3+4.5)=15(cm).
故答案为:15cm.
点睛:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
10、
【解析】
根据方差的意义进行判断.
【详解】
因为甲组数有波动,而乙组的数据都相等,没有波动,
所以>.
故答案为:>.
此题考查方差,解题关键在于掌握方差的意义.
11、①②④⑤
【解析】
①②∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;
③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF•AD≠1,所以选项③不正确;
④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;
⑤在Rt△FEC中,EG⊥FC,∴=FG•CG,cs∠FCE=,∴CG===1,∴DG=CG,∴=FG•DG,故选项⑤正确;
本题正确的结论有4个,
故答案为①②④⑤.
12、18
【解析】
根据已知可求得菱形的边长,再根据直角三角形的性质求得菱形的高,从而根据菱形的面积公式计算得到其面积
【详解】
解:菱形的周长为14 cm,则边长为6cm,可求得60°所对的高为×6=3cm,则菱形的面积为6×3=18cm1.
故答案为18.
此题主要考查菱形的面积公式:边长乘以高,综合利用菱形的性质和勾股定理
13、
【解析】
先提取公共项y,然后观察式子,继续分解
【详解】
本题考查因式分解,掌握因式分解基本方法是解题关键
三、解答题(本大题共5个小题,共48分)
14、(1)14;0.08;4;(2)详见解析;(3)80.
【解析】
(1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;
(2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;
(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.
【详解】
解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;
故答案为:14;0.08;4;
(2)频数分布直方图、折线图如图,
(3)根据题意得:1000×(4÷50)=80(人),
则你估计该校进入决赛的学生大约有80人.
此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.
15、(1)方法①;方法②;(2)方案①购买更省钱,理由见解析
【解析】
(1)分别表示两种优惠方法的费用与购买水笔的只数之间的关系,
(2)分别求出两种方案下当x=12时y的值,比较并做出判断.
【详解】
解:(1)方法①:,即;
方法②:,即
(2)按方法①购买需要元;
按方法②购买需要元
答:按照方案①购买更省钱
考查一次函数的图象和性质、根据题意写出函数关系式是解题的关键.
16、(1);(2);(3)1或
【解析】
(1)连接,由、可求,即.因为过点的切线,故有,再加公共角,可证,由对应边成比例可求的长,进而得点坐标,即可求直线解析式.
(2)分别把点代入抛物线和直线解析式,求得抛物线解析式为,直线解析式可消去得.由于直线与抛物线相切(只有一个交点),故联立解析式得到关于的方程有两个相等的实数根,即△,即求得的值.
(3)因为二次函数图象与直线相切,所以把二次函数和直线解析式联立,得到关于的方程有两个相等是实数根,即△,整理得式子,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线.分类讨论对称轴在左侧、中间、右侧三种情况,画出图形得:①当对称轴在左侧即时,由图象可知时随的增大而增大,所以时取得最小值,把、代入得到关于的方程,方程无解;②当对称轴在范围内时,时即取得最小值,得方程,解得:;③当对称轴在2的右侧即时,由图象可知时随的增大而减小,所以时取得最小值,把、代入即求得的值.
【详解】
解:(1)如图1,连接,记过点的切线交轴于点
,
,
,
设直线解析式为:
,解得:
过点的的切线的解析式为;
(2)抛物线经过点
,解得:
抛物线解析式:
直线经过点
,可得:
直线解析式为:
直线与抛物线相切
关于的方程有两个相等的实数根
方程整理得:
△
解得:
直线解析式为;
(3)函数的图象与直线相切
关于的方程有两个相等的实数根
方程整理得:
△
整理得:,可看作关于的二次函数,
对应抛物线开口向上,对称轴为直线
当时,的最小值为
①如图2,当时,在时随的增大而增大
时,取得最小值
,方程无解;
②如图3,当时,时,取得最小值
,解得:;
③如图4,当时,在时随的增大而减小
时,取得最小值
,解得:,(舍去)
综上所述,的值为1或.
本题考查了圆的切线的性质,相似三角形的判定和性质,一元二次方程的解法及根与系数的关系,二次函数的图象与性质.第(3)题的解题关键是根据相切列得方程并得到含、的等式,转化为关于的二次函数,再根据画图讨论抛物线对称轴情况进行解题.
17、(1)A型跳绳的单价为1元/条,B型跳绳的单价为35元/条;(2)A型跳绳至少购买78条.
【解析】
(1)设B型跳绳的单价为x元/条,则A型跳绳的单价为(x﹣9)元/条,根据“用100元购买A型号跳绳的条数与用3500元购买B型号跳绳的条数相等”列出方程求解即可;
(2)设购买a条A型跳绳,则购买(200﹣a)条B型跳绳,根据题意列出不等式求解即可.
【详解】
(1)设B型跳绳的单价为x元/条,则A型跳绳的单价为(x﹣9)元/条,
根据题意得:,
解得:x=35,
经检验,x=35是原方程的解,且符合题意,
∴x﹣9=1.
答:A型跳绳的单价为1元/条,B型跳绳的单价为35元/条.
(2)设购买a条A型跳绳,则购买(200﹣a)条B型跳绳,
根据题意得:1a+35(200﹣a)≤6300,
解得:a≥.
∵这里的a是整数
∴a的最小值为78
答:A型跳绳至少购买78条.
本题考查了分式方程的实际问题,以及不等式与方案选择问题,解题的关键是读懂题意,抓住等量关系,列出方程或不等式.
18、迁移应用:①证明见解析;②CD=AD+BD;拓展延伸:①证明见解析;②3.
【解析】
迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;
②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cs30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;
拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cs30°,由此即可解决问题.
【详解】
迁移应用:①证明:如图②
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
∴△DAB≌△EAC,
②解:结论:CD=AD+BD.
理由:如图2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD•cs30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD.
拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.
∵四边形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等边三角形,
∴BA=BD=BC,
∵E、C关于BM对称,
∴BC=BE=BD=BA,FE=FC,
∴A、D、E、C四点共圆,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等边三角形,
②解:∵AE=5,EC=EF=2,
∴AH=HE=2.5,FH=4.5,
在Rt△BHF中,∵∠BFH=30°,
∴=cs30°,
∴BF==3=3.
本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、40°
【解析】
由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.
【详解】
解:绕点逆时针旋转到△的位置
本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.
20、1.
【解析】
试题分析:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=3,OD=2,∴AB=2,∴阴影部分的面积之和为3×2=1.故答案为1.
考点:中心对称.
21、x<1
【解析】
分析:
根据图象和点A的坐标找到直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围即可.
详解:
由图象可知,直线y=bx在直线y=ax+4下方部分所对应的图象在点A的左侧,
∵点A的坐标为(1,3),
∴不等式bx<ax+4的解集为:x<1.
故答案为x<1.
点睛:“知道不等式bx<ax+4的解集是函数图象中:直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围”是解答本题的关键.
22、
【解析】
由题意得:平移后的解析式为:y=2x+1-2=2x-1,
即.所得直线的表达式是y=2x-1.
故答案为y=2x-1.
23、
【解析】
利用设k法,分别将a,b都设出来,再代入中化简即可得出答案.
【详解】
解:设a=2k,b=5k
∴
故答案为:.
本题考查了比例的性质,属于基础知识,比较简单.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)当时,;(3)或.
【解析】
(1)先求出点E的坐标,再把E的坐标代入解析式即可
(2)根据点E的坐标,结合图象即可解答
(3)过作轴交直线于点、交直线于点,根据题意求出的坐标为,再令,得出的坐标为,根据OE,AB的解析式得出点的坐标为,点的坐标为,即可解答
【详解】
(1)∵直线与直线交于点,点的横坐标为3
∴点的坐标为,代入中
∴
(2)∵点的坐标为,有图像可知,当时,.
(3)过作轴交直线于点、交直线于点
∵
∴
∴点的坐标为
∴
令,∴
∴点的坐标为
∵点,
直线的解析式为,直线的解析式为
∴点的坐标为,点的坐标为
∴
∴
∴
∴或
∴或
此题考查一次函数中的直线位置关系,解题关键在于作辅助线
25、规定完成的日期为12天.
【解析】
关键描述语为:“由甲、乙两队合作3天,余下的工程由乙队单独做正好按期完成”;本题的等量关系为:甲3天的工作量+乙规定日期的工作量=1,把相应数值代入即可求解.
【详解】
解:设规定日期为x天,
则甲工程队单独完成要x天,乙工程队单独完成要(x+4)天,
根据题意得:
解之得:x=12,
经检验,x=12是原方程的解且符合题意.
答:规定完成的日期为12天.
此题考查分式方程的应用,根据工作量为1得到相应的等量关系是解决本题的关键;易错点是得到两人各自的工作时间.
26、(1)详见解析;(2)
【解析】
(1)由,,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
(2)可证AB=BC,由勾股定理可求出.
【详解】
(1)∵为中点,∴;
∵,∴;
∵,∴四边形是平行四边形.
∵,为的中点,∴.
∴平行四边形是菱形 .
(2)∵平分,∴;
∵,∴,
∴,∴;
在中,,,.
本题考查菱形的判定和性质、直角三角形斜边中线的性质、等腰三角形的判定,勾股定理等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
分组/分
频数
频率
50≤x<60
6
0.12
60≤x<70
a
0.28
70≤x<80
16
0.32
80≤x<90
10
0.20
90≤x≤100
c
b
合计
50
1.00
2025届山东省安丘市职工子弟学校九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2025届山东省安丘市职工子弟学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省潍坊市安丘市职工子弟学校2023-2024学年九年级数学第一学期期末综合测试试题含答案: 这是一份山东省潍坊市安丘市职工子弟学校2023-2024学年九年级数学第一学期期末综合测试试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,如图,点,在双曲线上,且,下列运算中,结果正确的是等内容,欢迎下载使用。
2023-2024学年山东省安丘市职工子弟学校数学九上期末检测试题含答案: 这是一份2023-2024学年山东省安丘市职工子弟学校数学九上期末检测试题含答案,共8页。试卷主要包含了定义新运算,下列调查方式合适的是等内容,欢迎下载使用。