终身会员
搜索
    上传资料 赚现金
    山东省滕州市南沙河中学2025届数学九上开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    山东省滕州市南沙河中学2025届数学九上开学复习检测模拟试题【含答案】01
    山东省滕州市南沙河中学2025届数学九上开学复习检测模拟试题【含答案】02
    山东省滕州市南沙河中学2025届数学九上开学复习检测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省滕州市南沙河中学2025届数学九上开学复习检测模拟试题【含答案】

    展开
    这是一份山东省滕州市南沙河中学2025届数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各式成立的是( )
    A.B.C.(﹣)2=﹣5D.=3
    2、(4分)下列命题中是真命题的是( )
    ①4的平方根是2
    ②有两边和一角相等的两个三角形全等
    ③连结任意四边形各边中点的四边形是平行四边形
    ④所有的直角都相等
    A.0个B.1个C.2个D.3个
    3、(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是( )
    A.﹣4B.﹣1C.0D.1
    4、(4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是( )
    A.①②③B.①②④C.①②⑤D.②④⑤
    5、(4分)周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
    A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
    C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
    6、(4分)如图,平行四边形,对角线交于点,下列选项错误的是( )
    A.互相平分
    B.时,平行四边形为矩形
    C.时,平行四边形为菱形
    D.时,平行四边形为正方形
    7、(4分)下列各式从左到右的变形为分解因式的是( )
    A.m2﹣m﹣6=(m+2)(m﹣3)
    B.(m+2)(m﹣3)=m2﹣m﹣6
    C.x2+8x﹣9=(x+3)(x﹣3)+8x
    D.x2+1=x(x+)
    8、(4分)如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长是( )
    A.18B.20C.22D.26
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
    10、(4分)计算:=________.
    11、(4分)如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.
    12、(4分)函数中,当满足__________时,它是一次函数.
    13、(4分)若代数式有意义,则x的取值范围是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在网格平面直角坐标系中,△ABC的顶点均在格点上.
    (1)请把△ABC向上平移2个单位长度,再向左平移1个单位长度得到△A'B′C',画出△A'B′C’并写出点A′,B′的坐标.
    (2)求△ABC的面积.
    15、(8分)如图,在菱形中,,点将对角线三等分,且,连接.
    (1)求证:四边形为菱形
    (2)求菱形的面积;
    (3)若是菱形的边上的点,则满足的点的个数是______个.
    16、(8分)已知如图:直线AB解析式为,其图像与坐标轴x,y轴分别相交于A、B两点,点P在线段AB上由A向B点以每秒2个单位运动,点C在线段OB上由O向B点以每秒1个单位运动(其中一点先到达终点则都停止运动),过点P与x轴垂直的直线交直线AO于点Q. 设运动的时间为t秒(t≥0).
    (1)直接写出:A、B两点的坐标A( ),B( ).
    ∠BAO=______________度;
    (2)用含t的代数式分别表示:CB= ,PQ= ;
    (3)是否存在t的值,使四边形PBCQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
    (4)(3分)是否存在t的值,使四边形PBCQ为菱形?若存在,求出t的值;若不存在,说明理由,
    并探究如何改变点C的速度(匀速运动),使四边形PBCQ在某一时刻为菱形,求点C的速度和时
    间t.
    17、(10分)某兴趣小组想借助如图所示的直角墙角(两边足够长),用20 长的篱笆围成一个矩形(篱笆只围两边),设.
    (1)若花园的面积为96,求的值;
    (2)若在处有一棵树与墙的距离分别是11和5,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积的最大值.
    18、(10分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.
    (1)若AB=10,BC=6,求△BCD的周长;
    (2)若AD=BC,试求∠A的度数.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,一块矩形的土地被分成4小块,用来种植4种不同的花卉,其中3块面积分别是,,,则第四块土地的面积是____.
    20、(4分)关于x的分式方程有增根,则a=_____.
    21、(4分)在平面直角坐标系中点、分别是轴、轴上的点且点的坐标是,.点在线段上,是靠近点的三等分点.点是轴上的点,当是等腰三角形时,点的坐标是__________.
    22、(4分)如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=_____时∠ACB=90°.
    23、(4分)方程=0的解是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,,相交于点,点在上,点在上,经过点.求证:四边形是平行四边形.
    25、(10分)如图,在平面直角坐标系中,O 为坐标原点,P、Q 是反比例函数(x>0)图象上的两点,过点 P、Q 分别作直线且与 x、y 轴分别交于点 A、B和点 M、N.已知点 P 为线段 AB 的中点.
    (1)求△AOB 的面积(结果用含 a 的代数式表示);
    (2)当点 Q 为线段 MN 的中点时,小菲同学连结 AN,MB 后发现此时直线 AN 与直线MB 平行,问小菲同学发现的结论正确吗?为什么?
    26、(12分)六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.
    (1)求A、B两种品牌服装每套进价分别为多少元;
    (2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据根式的计算法则计算即可.
    【详解】
    解:A、原式= ,不符合题意;
    B、原式为最简结果,不符合题意;
    C、原式=5,不符合题意;
    D、原式=3,符合题意,
    故选:D.
    本题主要考查根式的计算,这是基本知识点,应当熟练掌握.
    2、C
    【解析】
    根据平方根的概念、全等三角形的判定定理、中点四边形的性质判断即可.
    【详解】
    解:4的平方根是±2,①是假命题;
    有两边及其夹角相等的两个三角形全等,②是假命题;
    连结任意四边形各边中点的四边形是平行四边形,③是真命题;
    所有的直角都相等,④是真命题.
    故选C.
    本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    3、B
    【解析】
    先求出满足分式方程条件存立时a的值,再求出使直线y=3x+8a﹣17不经过第二象限时a的值,进而求出同时满足条件a的值.
    【详解】
    解:解分式方程得:
    x=﹣,
    ∵x是整数,
    ∴a=﹣3,﹣2,1,3;
    ∵分式方程有意义,
    ∴x≠0或2,
    ∴a≠﹣3,
    ∴a=﹣2,1,3,
    ∵直线y=3x+8a﹣17不经过第二象限,
    ∴8a﹣17≤0
    ∴a≤,
    ∴a的值为:﹣3、﹣2、﹣1、1、2,
    综上,a=﹣2,1,
    和为﹣2+1=﹣1,
    故选:B.
    本题主要考查了一次函数的性质以及分式方程的解的知识,解题的关键是掌握根的个数与系数的关系以及分式有意义的条件,此题难度不大.
    4、B
    【解析】
    ①利用对称轴x=1判定;
    ②把A(1,3)代入直线y2=mx+n即可判定;
    ③根据对称性判断;
    ④方程ax2+bx+c=3的根,就是图象上当y=3是所对应的x的值.
    ⑤由图象得出,当1≤x≤4时,有y2≤y1;
    【详解】
    由抛物线对称轴为直线x=﹣,从而b=﹣2a,则2a+b=0故①正确;
    直线y2=mx+n过点A,把A(1,3)代入得m+n=3,故②正确;
    由抛物线对称性,与x轴的一个交点B(4,0),则另一个交点坐标为(2,0)故③错误;
    方程ax2+bx+c=3从函数角度可以看做是y=ax2+bx+c与直线y=3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点
    故方程ax2+bx+c=3有两个相等的实数根,因而④正确;
    由图象可知,当1≤x≤4时,有y2≤y1 故当x=1或4时y2=y1 故⑤错误.
    故选B.
    本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.
    5、C
    【解析】
    解:A.小丽从家到达公园共用时间20分钟,正确;
    B.公园离小丽家的距离为2000米,正确;
    C.小丽在便利店时间为15﹣10=5分钟,错误;
    D.便利店离小丽家的距离为1000米,正确.
    故选C.
    6、D
    【解析】
    根据平行四边形、矩形、菱形和正方形的性质,逐一判定即可得解.
    【详解】
    A选项,根据平行四边形对角线互相平分的性质,即可判定正确;
    B选项,对角线相等的平行四边形是矩形,正确;
    C选项,对角线互相垂直的平行四边形为菱形,正确;
    D选项,并不能判定其为正方形;
    故答案为D.
    此题主要考查平行四边形、矩形、菱形和正方形的判定,熟练掌握,即可解题.
    7、A
    【解析】
    根据因式分解的概念逐项判断即可.
    【详解】
    A、等式从左边到右边,把多项式化成了两个整式积的形式,符合因式分解的定义,故A正确;
    B、等式从左边到右边属于整式的乘法,故B不正确;
    C、等式的右边最后计算的是和,不符合因式分解的定义,故C不正确;
    D、在等式的右边不是整式,故D不正确;
    故选A.
    8、A
    【解析】
    根据函数的图象、结合图形求出AB、BC的值,即可得出矩形ABCD的周长.
    【详解】
    解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,
    函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5,
    ∴AB=5,BC=4,
    ∴矩形ABCD的周长=2(AB+BC)=1.
    故选A.
    本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出AB、BC的长度是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.
    【详解】
    解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,
    ∴ ,
    整理得, ,

    当时,
    故答案为:.
    本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.
    10、 ﹣1
    【解析】
    利用二次根式的性质将二次根式化简得出即可.
    【详解】
    解:=|1-|= ﹣1.
    故答案为: ﹣1.
    本题考查二次根式的化简求值,正确化简二次根式是解题关键.
    11、
    【解析】
    连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.
    【详解】
    解:如图,连接BF
    ∵△ABC为等边三角形,AD⊥BC,AB=6,
    ∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
    ∵△CEF为等边三角形
    ∴CF=CE,∠FCE=60°
    ∴∠FCE=∠ACB
    ∴∠BCF=∠ACE
    ∴在△BCF和△ACE中
    BC=AC,∠BCF=∠ACE,CF=CE
    ∴△BCF≌△ACE(SAS)
    ∴∠CBF=∠CAE=30°,AE=BF
    ∴当DF⊥BF时,DF值最小
    此时∠BFD=90°,∠CBF=30°,BD=3
    ∴DF=BD=
    故答案为:.
    本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.
    12、k≠﹣1
    【解析】
    分析: 根据一次函数的定义解答即可,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.
    详解:由题意得,
    k+1≠0,
    ∴k ≠-1.
    故答案为k ≠-1.
    点睛: 本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.
    13、且
    【解析】
    结合二次根式和分式有意义的条件,列式求解即可得到答案;
    【详解】
    解:∵代数式有意义,
    ∴,
    解得:且,
    故答案为:且.
    本题主要考查了二次根式和分式有意义的条件;对于二次根式,被开方数不能为负;对于分式,分母不能为0;掌握这两个知识点是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);;(2)7
    【解析】
    (1)将A、B、C三点分别按要求平移,即可得出新坐标;;,连接三点,即可得出新三角形;
    (2)将△ABC和周围的三个三角形整体长方形,长方形面积很容易得出,分别减去周围三个三角形的面积,即可得出,.
    【详解】
    解:(1)如图

    (2)


    (1)此题主要考查平面坐标系中的平移问题,对应坐标按要求平移即可得出新坐标;
    (2)将△ABC和周围的三个三角形整体长方形,长方形面积很容易得出,分别减去周围三个三角形的面积,即可得出.
    15、(1)见解析;(2);(3)1
    【解析】
    (1)根据题意证明△AED≌△AEB≌△CFD≌△CFB,得到四边相等即可证明是菱形;
    (2)求出菱形的对角线的长,利用菱形的面积等于对角线乘积的一半解决问题即可.
    (3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.求出PE+PF的最值,判断出在线段AD上存在两个点P满足条件,由此即可判断.
    【详解】
    (1)∵四边形ABCD是菱形,
    ∴AD≡AB=CD=CB,∠DAE=∠BAE=∠DCF=∠BCF,
    ∴△AED≌△AEB≌△CFD≌△CFB(SAS)
    ∴DE=BE=DF=BF,
    ∴四边形DEBF为菱形.
    (2)连接DB,交AC于O,
    ∵四边形ABCD是菱形,
    ∴DB⊥AC,,
    又∵AE=EF=FC=2,
    ∴AO=3,AD=2DO,
    ∴,∴,

    (3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.
    易知PE+PF的最小值=2
    当点P由A运动到D时,PE+PF的值由最大值6减小到2再增加到4,
    ∵PE+PE=,2<<4,
    ∴线段AD上存在两个点P,满足PE+PF=
    ∴根据对称性可知:菱形ABCD的边上的存在1个点P满足条件.
    故答案为1.
    本题考查菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、(1),∠BAO=30°;(2);(3)见解析;(4) 当点C的速度变为每秒个单位时,时四边形PBCQ是菱形.
    【解析】
    【分析】(1)设x=0,y=0可分别求出A,B的坐标;(2)纵坐标的差等于线段长度;(3)当PQ=BC时 , 即,是平行四边形;(4)时,,,所以不可能是菱形;若四边形PBCQ构成菱形则,PQ=BC,
    且PQ=PB时成立.
    【详解】解:(1)直接写出:A、B两点的坐标,∠BAO=30°
    (2)用含t的代数式分别表示:;
    (3)∵
    ∴当PQ=BC时 , 即,时,四边形PBCQ是平行四边形.
    (4)∵时,,,
    ∴四边形PBCQ不能构成菱形。
    若四边形PBCQ构成菱形则,PQ=BC,
    且PQ=PB时成立.
    则有时
    BC=BP=PQ= OC=OB-BC=

    ∴当点C的速度变为每秒个单位时,时四边形PBCQ是菱形.
    【点睛】本题考核知识点:一次函数,平行四边形,菱形的判定.此题是综合题,要用数形结合思想进行分析.
    17、(1)的值为8或12;(2)当时,的值最大,最大值为99
    【解析】
    (1)根据面积可列出一元二次方程,即可求解;
    (2)根据题意列出关于x的不等式组,再利用二次函数的性质进行求解.
    【详解】
    解:(1),,
    的值为8或12
    (2)依题意得,得
    当时,随的增大而增大,
    所以,当时,的值最大,最大值为99
    此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系与不等关系进行求解.
    18、(1)16;(2)25°.
    【解析】
    根据线段垂直平分线的性质,可得CD=AD,根据三角形的周长公式,可得答案;根据线段垂直平分线的性质,可得CD=AD,根据等腰三角形的性质,可得∠B与∠CDB的关系,根据三角形外角的性质,可得∠CDB与∠A的关系,根据三角形内角和定理,可得答案.
    【详解】
    解:(1)∵DE是AC的垂直平分线,
    ∴AD=CD.
    ∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,
    又∵AB=10,BC=6,
    ∴C△BCD=16;
    (2)∵AD=CD
    ∴∠A=∠ACD,
    设∠A=x,
    ∵AD=CB,
    ∴CD=CB,
    ∴∠CDB=∠CBD.
    ∵∠CDB是△ACD的外角,
    ∴∠CDB=∠A+∠ACD=2x,
    ∵∠A、∠B、∠ACB是三角形的内角,
    ∵∠A+∠B+∠ACB=180°,
    ∴x+2x+105°=180°,
    解得x=25°
    ∴∠A=25°.
    本题考查线段垂直平分线的性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、54
    【解析】
    由矩形的面积公式可得20m2,30m2的两个矩形的长度比为2:3,即可求第四块土地的面积.
    【详解】
    解:∵20m2,30m2的两个矩形是等宽的,
    ∴20m2,30m2的两个矩形的长度比为2:3,
    ∴第四块土地的面积==54m2,
    故答案为:54
    本题考查了矩形的性质,熟练运用矩形的面积公式是本题的关键.
    20、a=-1
    【解析】
    根据分式方程的解法求出方程的解,然后根据方程有增根,则x=-5,从而得出a的值.
    【详解】
    去分母可得:1+a=x+5, 解得:x=a-2, ∵分式方程有增根, ∴x=-5,即a-2=-5,
    解得:a=-1.
    本题主要考查的是分式方程的解得情况,属于中等难度的题型.分式方程有增根是因为整式方程的解会使得分式的分母为零.
    21、(0,)或(0,-)或(0,-)或(0,-2)
    【解析】
    根据条件可得AC=2,过点C作CD⊥OA,由勾股定理得到OC=,再分以下三种情况求解:①当OP=OC时,可直接得出点P的坐标为(0,)或(0,-);②当PO=PC时,点P在OC的垂直平分线PE上,先求出直线OC的解析式,从而可求出直线PE的解析式,最后可求得P(0,-);③当CO=CP时,根据OP=2|yC|=2×1=2,求得P(0,-2).
    【详解】
    解:∵点B坐标是(0,-3),∠OAB=30°,
    ∴AB=2×3=6,AO=3,
    ∵点C在线段AB上,是靠近点A的三等分点,
    ∴AC=2,
    过点C作CD⊥OA于D,
    ∴CD=AC=1,
    ∴AD=CD=,
    ∴OD=OA-AD=3-=2,
    ∴OC=.
    ∵△OCP为等腰三角形,分以下三种情况:
    ①当OP=OC=时,点P的坐标为(0,)或(0,-);
    ②当PO=PC时,点P在OC的垂直平分线PE上,其中E为OC的中点,
    ∴点E的坐标为(,-),
    设直线OC的解析式为y=k1x,将点C(2,-1)代入得k1=-,
    则可设直线PE的解析式为y=k2x+b,则k1·k2=-1,∴k2=2,
    ∴将点E(,-)代入y=2x+b,得b=-,
    ∴P(0,−),
    ③当CO=CP时,OP=2|yC|=2×1=2,
    ∴P(0,-2),
    综上所述,当△OCP为等腰三角形时,点P的坐标为(0,)或(0,-)或(0,-)或(0,-2),
    故答案为:(0,)或(0,-)或(0,-)或(0,-2).
    本题考查了等腰三角形的判定和性质,含30°的直角三角形的性质,勾股定理以及一次函数解析式的求法等知识,正确作出辅助线是解题的关键.
    22、1
    【解析】
    设△ABC的三边分别为BC=a、AC=b、AB=c,当∠ACB=90°时,△ABC是直角三角形,由勾股定理可得到a2+b2=c2,即S1+S2=S3,代入可得解.
    【详解】
    设△ABC的三边分别为BC=a、AC=b、AB=c,
    ∴S1=a2=9,S2=b2,S3=c2=25,
    当∠ACB=90°时,△ABC是直角三角形,
    ∴a2+b2=c2,即S1+S2=S3,
    ∴S2=S3﹣S1=1.
    故答案为:1.
    本题考查了勾股定理的几何背景,灵活运用勾股定理是解题关键.
    23、x=5.
    【解析】
    把两边都平方,化为整式方程求解,注意结果要检验.
    【详解】
    方程两边平方得:(x﹣3)(x﹣5)=0,
    解得:x1=3,x2=5,
    经检验,x2=5是方程的解,
    所以方程的解为:x=5.
    本题考查了无理方程的解法,解含未知数的二次根式只有一个的无理方程时,一般步骤是:①移项,使方程左边只保留含有根号的二次根式,其余各项均移到方程的右边;②两边同时平方,得到一个整式方程;③解整式方程;④验根.
    二、解答题(本大题共3个小题,共30分)
    24、见解析.
    【解析】
    先利用平行四边形的性质得到,;再利用平行线性质证得,;利用三角形全等可得,即可求证.
    【详解】
    在中,,相交于点,
    ,.
    ,.
    (AAS).

    四边形是平行四边形.
    本题考查了平行四边形的证明,难度适中,熟练掌握平行四边形的性质是解题的关键.
    25、(1)S=2a+2;(2)正确,理由见解析
    【解析】
    (1)过点P作PP⊥x轴,PP ⊥y轴,由P为线段AB的中点,可知PP,PP是△AOB的中位线,故OA=2PP,OB=2PP,再由点P是反比例函数y=(x>0)图象上的点,可知S = OA×OB=×2PP×2PP=2PP×PP=2a+2;
    (2)由点Q为线段MN的中点,可知同(1)可得S=S =2a+2,故可得出OA•OB=OM•ON,即 ,由相似三角形的判定定理可知△AON∽△MOB,故∠OAN=∠OMB,由此即可得出结论.
    【详解】
    (1)过点P作PP⊥x轴,PP⊥y轴,
    ∵P为线段AB的中点,
    ∴PP,PP是△AOB的中位线,
    ∴OA=2PP,OB=2PP,
    ∵点P是反比例函数y= (x>0)图象上的点,
    ∴S =OA×OB=×2PP×2PP=2PP×PP=2a+2;
    (2)结论正确.
    理由:∵点Q为线段MN的中点,
    ∴同(1)可得S=S =2a+2,
    ∴OA⋅OB=OM⋅ON,
    ∴,
    ∵∠AON=∠MOB,
    ∴△AON∽△MOB,
    ∴∠OAN=∠OMB,
    ∴AN∥MB.
    此题考查反比例函数综合题,解题关键在于作辅助线
    26、(1)A、B两种品牌服装每套进价分别为100元、75元;(2)17套.
    【解析】
    (1)首先设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍.”列出方程,解方程即可;
    (2)首先设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)>1200,再解不等式即可.
    【详解】
    解:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为元,由题意得:,
    解得:,
    经检验:是原分式方程的解,

    答:A、B两种品牌服装每套进价分别为100元、75元;
    (2)设购进A品牌的服装a套,则购进B品牌服装套,由题意得:

    解得:,
    答:至少购进A品牌服装的数量是17套.
    本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    山东省曲阜市昌平中学2025届九上数学开学复习检测模拟试题【含答案】: 这是一份山东省曲阜市昌平中学2025届九上数学开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省滕州市鲍沟中学数学九上开学考试模拟试题【含答案】: 这是一份2025届山东省滕州市鲍沟中学数学九上开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省德州市庆云二中学九上数学开学复习检测模拟试题【含答案】: 这是一份2025届山东省德州市庆云二中学九上数学开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map