


2025届山东省聊城市数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【 】
A.cm B.cm C.cm D.cm
2、(4分)一次函数与的图象如图所示,有下列结论:①;②;③当时,其中正确的结论有( )
A.个B.个C.个D.个
3、(4分)已知点在第二象限,则点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)反比例函数的图象的一支在第二象限,则的取值范围是()
A.B.C.D.
5、(4分)在下列交通标志中,是中心对称图形的是( )
A.B.
C.D.
6、(4分)若,则化简后为( )
A.B.C.D.
7、(4分)函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是( )
A.B.C.D.
8、(4分)计算: ( )
A.5B.7C.-5D.-7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个反比例函数(k≠0)的图象经过点P(-2,-1),则该反比例函数的解析式是________.
10、(4分)若数使关于的不等式组有且只有四个整数解,的取值范围是__________.
11、(4分)因式分解:_________.
12、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
13、(4分)当x______时,分式有意义.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.
(1)求证:平行四边形ABCD是矩形;
(2)请添加一个条件使矩形ABCD为正方形.
15、(8分)某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.
(1)求第一次购书每本多少元?
(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?
16、(8分)在平面直角坐标系中,一次函数的图象经过点.
(1)当时,且正比例函数的图象经过点.
①若,求的取值范围;
②若一次函数的图象为,且不能围成三角形,求的值;
(2)若直线与轴交于点,且,求的数量关系.
17、(10分)将矩形ABCD折叠使点A,C重合,折痕交BC于点E,交AD于点F,可以得到四边形AECF是一个菱形,若AB=4,BC=8,求菱形AECF的面积.
18、(10分)在平面直角坐标系中,直线分别交轴,轴于点.
(1)当,自变量的取值范围是 (直接写出结果);
(2)点在直线上.
①直接写出的值为 ;
②过点作交轴于点,求直线的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.
20、(4分)对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.
21、(4分)如图,直线AB与反比例函数的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,则v的取值范围是__________.
22、(4分)如图,在四边形中,,,,,且,则______度.
23、(4分)若关于的一次函数(为常数)中,随的增大而减小,则的取值范围是____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB
(1)求证:四边形EFCD是菱形;
(2)设CD=2,求D、F两点间的距离.
25、(10分)为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:
(1)求被抽样调查的学生有多少人?并补全条形统计图;
(2)每天户外活动时间的中位数是 小时?
(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?
26、(12分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。
(1)求证:四边形ADEF为矩形;
(2)若∠C=30°、AF=2,写出矩形ADEF的周长。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B。
【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,
在Rt△AOB中,,
∵BD×AC=AB×DH,∴DH=cm。
在Rt△DHB中,,AH=AB﹣BH=cm。
∵,∴GH=AH=cm。故选B。
考点:菱形的性质,勾股定理,锐角三角函数定义。
2、B
【解析】
利用一次函数的性质分别判断后即可确定正确的选项.
【详解】
解:①∵的图象与y轴的交点在负半轴上,
∴a<0,
故①错误;
②∵的图象从左向右呈下降趋势,
∴k<0,故②错误;
③两函数图象的交点横坐标为4,
当x<4时, 在的图象的上方,即y1>y2,故③正确;
故选:B.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.
3、D
【解析】
依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.
【详解】
∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.
故选D.
本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
4、A
【解析】
分析:当比例系数小于零时,反比例函数的图像经过二、四象限,由此得到k-1<0,解这个方程求出k的取值范围.
详解:由题意得,
k-1<0,
解之得
k<1.
故选A.
点睛:本题考查了反比例函数的图像,对于反比例函数,当k>0,反比例函数图象的两个分支在第一、三象限;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内.
5、C
【解析】
解:A图形不是中心对称图形;
B不是中心对称图形;
C是中心对称图形,也是轴对称图形;
D是轴对称图形;不是中心对称图形
故选C
6、A
【解析】
二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.
解答
【详解】
有意义,则y>0,
∵xy<0,
∴x<0,
∴原式=.
故选A
此题考查二次根式的性质与化简,解题关键在于掌握其定义
7、D
【解析】
【分析】分两种情况分析:当k>0或当k<0时.
【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;
当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.
故选:D
【点睛】本题考核知识点:一次函数和反比例函数的图象. 解题关键点:理解两种函数的性质.
8、A
【解析】
先利用二次根式的性质进行化简,然后再进行减法运算即可.
【详解】
=6-1
=5,
故选A.
本题考查了二次根式的化简,熟练掌握是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
把(-2,-1)代入,得,k=-1×(-2)=2,∴解析式为.
10、
【解析】
此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.
【详解】
解不等式①得,x<5,
解不等式②得,x≥2+2a,
由上可得2+2a≤x<5,
∵不等式组恰好只有四个整数解,即1,2,3,4;
∴0<2+2a≤1,
解得,.
此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
11、
【解析】
直接提取公因式即可.
【详解】
.
故答案为:.
本题考查了因式分解——提取公因式法,掌握知识点是解题关键.
12、y=2x+1
【解析】
分析:直接根据函数图象平移的法则进行解答即可.
详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
故答案为y=2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
13、≠
【解析】
试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.
由题意得,.
考点:分式有意义的条件
点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)AB=AD(或AC⊥BD答案不唯一).
【解析】
试题分析:(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;
(2)根据正方形的判定方法添加即可.
试题解析:解:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;
(2)AB=AD(或AC⊥BD答案不唯一).
理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.
或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.
15、(1)第一次购书每本25元;(2)每本图书的售价至少是1元.
【解析】
(1)设第一次购书的进价是x元/本,则第二批每套的进价是(1+20%)x元/本,然后根据题意列出分式方程即可得出结论;
(2)设每本图书的售价为y元,然后根据题意列出不等式即可得出结论.
【详解】
(1)设第一次购书的进价是x元/本,则第二批每套的进价是(1+20%)x元/本,
根据题意得:=-10,
解得:x=25,
经检验,x=25是原分式方程的解.
答:第一次购书每本25元.
(2)设每本图书的售价为y元,
根据题意得:[500÷25+(500÷25+10)]y-500-900≥(500+900)×25%,
解得:y≥1.
答:每本图书的售价至少是1元.
此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
16、(1)①;②的值为或1或;(2).
【解析】
(1)用待定系数法求出B点坐标,再求得正比例函数解析式,①由函数值的大小关系列出x的不等式,便可求得x的取值范围;②当l3过l1与l2的交点和l3与l1或l2平行时,l1,l2,l3不能围成三角形,由此求出k3;
(2)根据题意求得k1=-2,则y1=-2x+4m,代入(n,0),即可得到m,n的数量关系.
【详解】
解:(1)依题意,得:,
图象经过点,
所以,,
解得:
所以,,
正比例函数的图象经过点,
所以,,解得:,
所以,,。
①若,则,
解得,;
②若,,不能围成三角形,则或,或经过与的交点,
∵为:,为,
解,解得,
∴交点,
代入得,,
解得,
∴的值为或1或;
(2)∵一次函数的图象经过点,
∴①
直线与轴交于点,
∴②
∴①×2+②得,,
∵,
∴,
∴一次函数为,
∵经过
∴,
∴.
本题考查了一次函数和一元一次不等式,一次函数的图象以及一次函数的性质,明确不能构成三角形的三种情况是解题的关键.
17、20.
【解析】
设菱形AECF的边长为x,根据矩形的性质得到∠B=90°,根据勾股定理列出方程,解方程求出x的值,根据菱形的面积公式计算即可.
【详解】
设菱形AECF的边长为x,则BE=8−x,
∵四边形ABCD为矩形,
∴∠B=90°,
由勾股定理得, ,即,
解得,x=5,即EC=5,
∴菱形AECF的面积=EC⋅AB=20.
此题考查矩形的性质、翻折变换(折叠问题)、菱形的性质,解题关键在于掌握烦着图形得变化规律.
18、(1);(2)①1;②
【解析】
(1)先利用直线y=3x+3确定A、B的解析式,然后利用一次函数的性质求解;
(2))①把C(-,n)代入y=3x+3可求出n的值;
②利用两直线垂直,一次项系数互为负倒数可设直线CD的解析式为y=-x+b,然后把C(-,1)代入求出b即可.
【详解】
解:(1)当y=0时,3x+3=0,解得x=-1,则A(-1,0),
当x=0时,y=3x+3=3,则B(0,3),
当0<y≤3,自变量x的取值范围是-1≤x<0;
(2)①把C(-,n)代入y=3x+3得3×(-)+3=n,解得n=1;
②∵AB⊥CD,
∴设直线CD的解析式为y=-x+b,
把C(-,1)代入得-×(-)+b=1,解得b=,
∴直线CD的解析式为y=-x+.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(0,)
【解析】
作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;
【详解】
解:作点A关于y轴的对称点A',连接A'D,
此时△ADE的周长最小值为AD+DA'的长;
∵A的坐标为(﹣4,5),D是OB的中点,
∴D(﹣2,0),
由对称可知A'(4,5),
设A'D的直线解析式为y=kx+b,
∴,
∴,
∴,
∴E(0,);
故答案为(0,);
本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.
20、m>1
【解析】
根据图象的增减性来确定(m﹣1)的取值范围,从而求解.
【详解】
解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,
∴m﹣1>2,
解得,m>1.
故答案是:m>1.
本题考查了一次函数的图象与系数的关系.
函数值y随x的增大而减小⇔k<2;
函数值y随x的增大而增大⇔k>2.
21、2<v<1
【解析】
由∠ACO=45°可设直线AB的解析式为y=-x+b,由点A、B在反比例函数图象上可得出p=,q=,代入点A、B坐标中,再利用点A、B在直线AB上可得=﹣u+b①,=﹣v+b②,两式做差即可得出u关于v的关系式,结合u的取值范围即可得答案.
【详解】
∵∠ACO=45°,直线AB经过二、四象限,
∴设直线AB的解析式为y=﹣x+b.
∵点A(u,p)和点B(v,q)为反比例函数的图象上的点,
∴p=,q=,
∴点A(u,),点B(v,).
∵点A、B为直线AB上的点,
∴=﹣u+b①,=﹣v+b②,
①﹣②得:,
即.
∵<u<2,
∴2<v<1,
故答案为:2<v<1.
本题考查反比例函数与一次函数的综合,根据∠ACO=45°设出直线AB解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.
22、1
【解析】
根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.
【详解】
∵AB=2,BC=2,∠ABC=90°,
∴AC=,,∠BAC=45°,
∵12+(2)2=32,
∴∠DAC=90°,
∴∠BAD=90°+45°=1°,
故答案是:1.
考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
23、
【解析】
根据一次函数的增减性可求得k的取值范围.
【详解】
∵一次函数y=(1-k)x+1(k是常数)中y随x的增大而减小,
∴1-k<0,解得k>1,
故答案为:k>1.
本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)
【解析】
(1)由等边三角形的性质得出ED=CD=CE,证出△CEF是等边三角形,得出EF=CF=CE,得出ED=CD=EF=CF,即可得出结论;
(2)连接DF,与CE相交于点G,根据菱形的性质求出DG,即可得出结果.
【详解】
(1)证明:∵△ABC与△CDE都是等边三角形,
∴ED=CD=CE,∠A=∠B=∠BCA=60°.
∴EF∥AB.
∴∠CEF=∠A=60°,∠CFE=∠B=60°,
∴∠CEF=∠CFE=∠ACB,
∴△CEF是等边三角形,
∴EF=CF=CE,
∴ED=CD=EF=CF,
∴四边形EFCD是菱形.
(2)连接DF与CE交于点G
∵四边形EFCD是菱形
∴DF⊥CE, DF=2DG
∵CD=2,△EDC是等边三边形
∴CG=1,DG=
∴DF=2DG=,即D、F两点间的距离为
本题考查了菱形的判定与性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.
25、(1)被调查的学生有500人,补全的条形统计图详见解析;(2)1;(3)该校每天户外活动时间超过1小时的学生有740人.
【解析】
试题分析:(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.
试题解析:解:(1)由条形统计图和扇形统计图可得,
0.5小时的有100人占被调查总人数的20%,
故被调查的人数有:100÷20%=500,
1小时的人数有:500﹣100﹣200﹣80=120,
即被调查的学生有500人,补全的条形统计图如下图所示,
(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,
(3)由题意可得,
该校每天户外活动时间超过1小时的学生数为:=740人,
即该校每天户外活动时间超过1小时的学生有740人.
考点:中位数;用样本估计总体;扇形统计图;条形统计图.
26、(1)证明见解析 (2)
【解析】
(1)连接DE.根据三角形的中位线的性质即可得到结论;
(2)根据矩形的性质得到∠BAC=∠FEC=90°,解直角三角形即可得到结论.
【详解】
(1)连接DE,
∵E、F分别是AC,BC中点
∴EF//AB,EF=AB
∵点D是AB中点
∴AD=AB,AD=EF
∴四边形ADFE为平行四边形
∵点D、E分别为AB、AC中点
∴DE=BC,
∵BC=2AF
∴DE=AF
∴四边形ADEF为矩形.
(2)∵四边形ADFE是矩形,
∴∠BAC=∠FEC=90°,
∵AF=2,F为BC中点,
∴BC=4,CF=2,
∵∠C=30°
∴AC=,CE=,EF=1,
∴AE=
∴矩形ADEF的周长为;
本题考查三角形中位线定理及应用,矩形的判定和性质,学生应熟练掌握以上定理即可解题.
题号
一
二
三
四
五
总分
得分
2025届山东省济宁鱼台县联考九上数学开学质量检测模拟试题【含答案】: 这是一份2025届山东省济宁鱼台县联考九上数学开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省博兴县九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届山东省博兴县九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省青岛五校联考数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024年山东省青岛五校联考数学九上开学教学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。