![山东省济宁邹城八中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16288039/0-1729811078914/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省济宁邹城八中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16288039/0-1729811078931/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省济宁邹城八中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16288039/0-1729811078950/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省济宁邹城八中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】
展开
这是一份山东省济宁邹城八中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则的值是( )
A.B.C.D.
2、(4分)如果一个等腰三角形的两边长为4、9,则它的周长为( )
A.17B.22C.17或22D.无法计算
3、(4分)下面四张扑克牌其中是中心对称的是( )
A.B.C.D.
4、(4分)满足不等式的正整数是( )
A.2.5B.C.-2D.5
5、(4分)如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是( )
A.AE=BFB.AE⊥BF
C.AO=OED.S△AOB=S四边形DEOF
6、(4分)下列各组数中,能构成直角三角形的是( )
A.4,5,6B.1,1,C.6,8,11D.5,12,23
7、(4分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
A.,B.,
C.,D.,
8、(4分)某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
则这50名学生这一周在校的平均体育锻炼时间是
A.小时B.小时C.小时D.7小时
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.
10、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.
11、(4分)如图,是的角平分线,交于,交于.且交于,则________度.
12、(4分)同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,则它们另一个交点为坐标为_____.
13、(4分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:
(1)请填表中未完成的部分;
(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?
(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.
15、(8分)蚌埠“一带一路”国际龙舟邀请赛期间,小青所在学校组织了一次“龙舟”故事知多少比赛,小青从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计.以下是根据抽取同学的分数制作的不完整的频率分布表和频率分布直方图,请根据图表,回答下列问题: :
(1)根据上表填空: __,=. ,= .
(2)若小青的测试成绩是抽取的同学成绩的中位数,那么小青的测试成绩在什么范围内?
(3)若规定:得分在的为“优秀”,若小青所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加决赛,请问共有多少名学生被选拔参加决赛?
16、(8分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)
17、(10分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.
18、(10分)如图1,直线与轴交于点,与轴交于点,.
(1)求两点的坐标;
(2)如图2,以为边,在第一象限内画出正方形,并求直线的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______ .
20、(4分) “对顶角相等”的逆命题是________命题(填真或假)
21、(4分)如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。
22、(4分)一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为_____.
23、(4分)如图,在ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为________ .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点P是正方形ABCD内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.
(1)求证:△BCP≌△DCQ;
(2)延长BP交直线DQ于点E.
①如图2,求证:BE⊥DQ;
②若△BCP是等边三角形,请画出图形,判断△DEP的形状,并说明理由.
25、(10分)某G20商品专卖店每天的固定成本为400元,其销售的G20纪念徽章每个进价为3元,销售单价与日平均销售的关系如下表:
(1)设销售单价比每个进价多x元,用含x的代数式表示日销售量.
(2)若要使日均毛利润达到1840元(毛利润=总售价﹣总进价﹣固定成本),且尽可能多的提升日销售量,则销售单价应定为多少元?
26、(12分)上合组织峰会期间,甲、乙两家商场都将平时以同样价格出售相同的商品进行让利酬宾,其中甲商场所有商品按7折出售,乙商场对一次购物中超过200元后的价格部分打6折.
(1)以x(单位:元)表示商品原价,y(单位:元)表示付款金额,分别就两家商场的让利方式写出y与x之间的函数解析式;
(2)上合组织峰会期问如何选择这两家商场去购物更省钱?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵,∴设出b=5k,得出a=13k,把a,b的值代入,得,
.故选D.
2、B
【解析】
求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
解:(1)若4为腰长,9为底边长,
由于4+4<9,则三角形不存在;
(2)若9为腰长,则符合三角形的两边之和大于第三边.
所以这个三角形的周长为9+9+4=1.
故选:B.
本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
3、B
【解析】
根据中心对称图形的概念即可求解
【详解】
解:A、不是中心对称图形,不符合题意;
B、是中心对称图形,符合题意;
C、不是中心对称图形,不符合题意;
D、不是中心对称图形,不符合题意.
故选:B.
本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.
4、D
【解析】
在取值范围内找到满足条件的正整数解即可.
【详解】
不等式的正整数解有无数个,
四个选项中满足条件的只有5
故选:D.
考查不等式的解,使不等式成立的未知数的值就是不等式的解.
5、C
【解析】
试题解析:A、∵在正方形ABCD中,
又
∴≌
故此选项正确;
B、∵≌
故此选项正确;
C、连接
假设AO=OE,
∴
∴≌
又
∴AB不可能等于BE,
∴假设不成立,即
故此选项错误;
D、∵≌
∴S△AOB=S四边形DEOF,故此选项正确.
故选C.
6、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】
解:A、,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、故不是直角三角形,错误.
故选:B.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、B
【解析】
根据平行四边形的判定方法,对每个选项进行筛选可得答案.
【详解】
A、∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,故A选项不符合题意;
B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;
C、∵AD//BC,AD=BC,
∴四边形ABCD是平行四边形,故C选项不符合题意;
D、∵AB∥CD,
∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,
又∵∠BAD=∠BCD,
∴∠ABC=∠ADC,
∵∠BAD=∠BCD,∠ABC=∠ADC,
∴四边形ABCD是平行四边形,故D选项不符合题意,
故选B.
本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
8、C
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:
小时.
故这50名学生这一周在校的平均体育锻炼时间是6.6小时.
故选C.
本题考查加权平均数,解题的关键是熟练掌握加权平均数的计算公式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
把(1,a)代入y=2x可确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标的横纵坐标,由此即可求解.
【详解】
解:把(1,a)代入y=2x得a=2,
所以方程组的解为.
故答案为:.
本题考查了一次函数与二元一次方程(组)的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
10、①③④
【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.
【详解】
根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.
考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
11、
【解析】
先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出.
【详解】
如图所示:
∵DE∥AC,DF∥AB,
∴四边形AEDF为平行四边形,
∴OA=OD,OE=OF,∠2=∠3,
∵AD是△ABC的角平分线,
∵∠1=∠2,
∴∠1=∠3,
∴AE=DE.
∴▱AEDF为菱形.
∴AD⊥EF,即∠AOF=1°.
故答案是:1.
考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.
12、
【解析】
反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
【详解】
解:∵同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,
∴另一交点的坐标是(-3,1).
故答案是:(-3,1).
本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.
13、50°
【解析】
先根据平行线的性质以及角平分线的定义,得到∠AFE的度数,再根据平行线的性质,即可得到∠A的度数.
【详解】
∵CD∥EF,∠C=∠CFE=25°.
∵FC平分∠AFE,∴∠AFE=2∠CFE=50°.
又∵AB∥EF,∴∠A=∠AFE=50°.
故答案为50°.
本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)58%;(3)详见解析.
【解析】
(1)根据百分比的意义以及各组的百分比的和是1即可完成表格;
(2)根据百分比的意义即可求解;
(3)根据实际情况,写出的句子只要符合题意,与家务劳动有关即可,答案不唯一.
【详解】
解:(1)一组的百分比是:;
一组的百分比是:;
一组的人数是2(人;
(2)每周做家务的时间不超过1.5小时的学生所占的百分比是:;
(3)孝敬父母,每天替父母做半小时的家务.
本题难度中等,考查统计图表的识别,要注意统计表中各部分所占百分比的和是1,各组人数的和就是样本容量.
15、(1);(2);(1)24.
【解析】
(1)根据频数、频率、总数之间的关系一一解决问题即可;
(2)根据中位数的定义即可判断;
(1)用样本估计总体的思想解决问题即可.
【详解】
解:(1)9÷0.18=50(人).
a=50×0.06=1,m=50﹣(9+21+1+2)=15,b=15÷50=0.1.
故答案为:1,0.1,15;
(2)共有50名学生,中位数是第25、26个数据的平均数,第25、26个数据在第1组,所以小青的测试成绩在70≤x<80范围内;
(1)×600=24(人).
答:共有24名学生被选拔参加决赛.
本题考查频数分布直方图、样本估计总体的思想、频数分布表、中位数的定义等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.
16、详见解析
【解析】
作∠DAB=∠ ,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.
【详解】
如图所示.
本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
17、详见解析
【解析】
由AC=CD,∠ACB=∠DCE=90°,根据HL证出Rt△ACB≌Rt△DCE,推出∠A=∠D即可.
【详解】
∵点C为AD的中点,
∴AC=CD,
∵BE⊥AD,
∴∠ACB=∠DCE=90°,
在Rt△ACB和Rt△DCE中,,
∴Rt△ACB≌Rt△DCE(HL),
∴∠A=∠D,
∴AB∥ED.
考点:全等三角形的判定与性质
18、 (1);(2)直线的解析式为.
【解析】
(1)由题意A(0,-2k),B(2,0),再根据,构建方程即可解决问题;
(2)如图2中,作CH⊥x轴于H.利用全等三角形的性质求出点C坐标,再利用待定系数法求出直线CD的解析式即可
【详解】
(1)∵直线与轴交于点,与轴交于点,
∴,
∵,
∴,
∴,
∵,
∴,
∴;
(2)如图,作轴于点,
∵四边形是正方形,
∴,
∴,
∴,
∴,
∴,
∴,
∵,
∴设直线的解析式为,把代入,得,
∴直线的解析式为.
本题考查了一次函数的应用、正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、m≤1
【解析】
利用判别式的意义得到,然后解不等式即可.
【详解】
解:根据题意得,
解得.
故答案为:.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
20、假
【解析】
先交换原命题的题设与结论得到逆命题,然后根据对顶角的定义进行判断.
【详解】
命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.
故答案为:假.
考查命题与定理,写出原命题的逆命题是解题的关键.
21、
【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.
【详解】
∵四边形OABC是矩形,
∴∠B=90°,
∵BD=BE=1,
∴∠BED=∠BDE=45°,
∵沿直线DE将△BDE翻折,点B落在点B′处,
∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,
∴∠BEB′=∠BDB′=90°,
∵点B的坐标为(3,2),
∴点B′的坐标为(2,1).
故答案为:(2,1).
此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形
22、20(1﹣20%)(1﹣x)2=11.1.
【解析】
设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.1万元建立方程.
【详解】
设这辆车第二、三年的年折旧率为x,有题意,得
20(1﹣20%)(1﹣x)2=11.1.
故答案是:20(1﹣20%)(1﹣x)2=11.1.
一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.1万元建立方程是关键.
23、
【解析】
先由平行四边形对边相等得AD=BC, 作DE⊥AE,由题意可知△ADE为等腰直角三角形,根据勾股定理可以求出DE的长度,即AB和CD之间的距离.
【详解】
如图,过D作DE⊥AB交AB于E,
∵四边形ABCD为平行四边形,∴AD=BC=2,
△ADE为等腰直角三角形,
,
根据勾股定理得 ,
,
,
,
即AB和CD之间的距离为,
故答案为:
本题考查了平行四边形的性质,勾股定理,熟练利用勾股定理求直角三角形中线段长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)①证明见解析;②作图见解析;△DEP为等腰直角三角形,理由见解析.
【解析】
(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;
(2)①根据全等的性质和对顶角相等即可得到答案;
②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.
【详解】
(1)证明:∵∠BCD=90°,∠PCQ=90°,
∴∠BCP=∠DCQ,
在△BCP和△DCQ中,
,
∴△BCP≌△DCQ;
(2)①如图b,
∵△BCP≌△DCQ,
∴∠CBF=∠EDF,又∠BFC=∠DFE,
∴∠DEF=∠BCF=90°,
∴BE⊥DQ;
②画图如下,
∵△BCP为等边三角形,
∴∠BCP=60°,
∴∠PCD=30°,又CP=CD,
∴∠CPD=∠CDP=75°,
又∠BPC=60°,∠CDQ=60°,
∴∠EPD=45°,∠EDP=45°,
∴△DEP为等腰直角三角形.
本题考查的是正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质是解题的关键.
25、 (1)﹣40x+600;(2)销售单价应定为10元.
【解析】
(1)由表得出销售单价每增加1元时,其销售量减少40件,据此知其销售量为560-40(x+3-4)=-40x+600;
(2)根据“毛利润=总售价-总进价-固定成本”列出方程,解之求得x的值,再根据尽可能多的提升日销售量确定销售单价.
【详解】
解:(1)由表格可知,销售单价每增加1元时,其销售量减少40件,
根据题意知,其销售量为560﹣40(x+3﹣4)=﹣40x+600;
(2)根据题意,得:(﹣40x+600)x﹣400=1840,
整理,得:x2﹣15x+56=0,
解得:x1=7,x2=8,
因为要尽可能多的提升日销售量,
所以x=7,此时销售单价为10元,
答:销售单价应定为10元.
本题考查的是一元二次方程运用,熟练掌握一元二次方程是解题的关键.
26、(1)甲商场:y=0.7x,乙商场:当0≤x≤200时,y=x,当x>200时,y=200+0.6(x﹣200)=0.6x+80;(2)当x<800时,在甲商场购买比较省钱,当x=800时,在甲乙两商场购买花钱一样,当x>800时,在乙商场购买省钱.
【解析】
(1)根据题意可以分别求出甲乙两商场中y与x的函数关系式;
(2)根据(1)中的函数关系式和题意可以解答本题.
【详解】
.解:(1)由题意可得,
甲商场:y=0.7x,
乙商场:当0≤x≤200时,y=x,
当x>200时,y=200+0.6(x﹣200)=0.6x+80;
(2)令0.7x=0.6x+80,得x=800,
∴当x<800时,在甲商场购买比较省钱,
当x=800时,在甲乙两商场购买花钱一样,
当x>800时,在乙商场购买省钱.
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
题号
一
二
三
四
五
总分
得分
批阅人
时间小时
5
6
7
8
人数
10
10
20
10
时间x(小时)
划记
人数
所占百分比
0.5x≤x≤1.0
正正
14
28%
1.0≤x<1.5
正正正
15
30%
1.5≤x<2
7
2≤x<2.5
4
8%
2.5≤x<3
正
5
10%
3≤x<3.5
3
3.5≤x<4
4%
合计
50
100%
组别
分组
频数
频率
1
9
0.18
2
3
21
0.42
4
0.06
5
2
销售单价(元)
4
5
6
7
8
9
10
日平均销售量(瓶)
560
520
480
440
400
360
320
相关试卷
这是一份2024年山东省济宁市邹城市数学九年级第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省济宁市邹城市九级九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省邹城市邹城中学数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)