|试卷下载
终身会员
搜索
    上传资料 赚现金
    钦州市重点中学2024年九上数学开学质量跟踪监视试题【含答案】
    立即下载
    加入资料篮
    钦州市重点中学2024年九上数学开学质量跟踪监视试题【含答案】01
    钦州市重点中学2024年九上数学开学质量跟踪监视试题【含答案】02
    钦州市重点中学2024年九上数学开学质量跟踪监视试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    钦州市重点中学2024年九上数学开学质量跟踪监视试题【含答案】

    展开
    这是一份钦州市重点中学2024年九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)平行四边形所具有的性质是( )
    A.对角线相等B.邻边互相垂直
    C.两组对边分别相等D.每条对角线平分一组对角
    2、(4分)下列曲线中不能表示是的函数的是
    A.B.
    C.D.
    3、(4分)以下图形中,既是中心对称图形,又是轴对称图形的是( )
    A.三角形B.菱形C.等腰梯形D.平行四边形
    4、(4分)如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为( )
    A.1B.C.2D.
    5、(4分)函数y=中自变量x的取值范围是( )
    A.x≥﹣1 B.x≤﹣1 C.x>﹣1 D.x<﹣1
    6、(4分)下面四个手机的应用图标中,是中心对称图形的是( )
    A.B.C.D.
    7、(4分)如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为( )
    A.2B.4C.8D.4
    8、(4分)某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
    A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是______(填“甲”或“乙”或“丙”)
    10、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.
    11、(4分)若关于x的方程有增根,则k的值为_____.
    12、(4分)如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
    13、(4分)在三角形中,点分别是的中点,于点,若,则________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分) “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
    请结合图表完成下列各题
    (1)①求表中a的值;②频数分布直方图补充完整;
    (2)小亮想根据此直方图绘制一个扇形统计图,请你帮他算出成绩为90≤x<100这一组所对应的扇形的圆心角的度数;
    (3)若测试成绩不低于80分为优秀,则本次测试的优秀率(百分比)是多少?
    15、(8分)在四边形 ABCD 中,对角线 AC、BD 相交于点 O,过点 O 的两条直线分别交边 AB、CD、AD、BC 于点 E、F、G、H.
    (1)如图①,若四边形 ABCD 是正方形,且 AG=BE=CH=DF,则 S四边形AEOG= S正方形 ABCD;
    (2)如图②,若四边形 ABCD 是矩形,且 S四边形 AEOG=S矩形 ABCD,设 AB=a, AD=b,BE=m,求 AG 的长(用含 a、b、m 的代数式表示);
    (3)如图③,若四边形 ABCD 是平行四边形,且 AB=3,AD=5,BE=1, 试确定 F、G、H 的位置,使直线 EF、GH 把四边形 ABCD 的面积四等分.
    16、(8分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为 1 个单位长度.
    (1)画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1 的坐标;
    (2)将△ABC 绕点 C 顺时针旋转 90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A 所经过的路径长
    17、(10分)我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为,所以这个三角形是常态三角形.
    (1)若三边长分别是2,和4,则此三角形 常态三角形(填“是”或“不是” ;
    (2)如图,中,,,点为的中点,连接,若是常态三角形,求的面积.
    18、(10分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程
    解:设x2﹣4x=y,
    原式=(y+2)(y+6)+4 (第一步)
    =y2+8y+16 (第二步)
    =(y+4)2(第三步)
    =(x2﹣4x+4)2(第四步)
    (1)该同学第二步到第三步运用了因式分解的 (填序号).
    A.提取公因式 B.平方差公式
    C.两数和的完全平方公式 D.两数差的完全平方公式
    (2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 .
    (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.
    20、(4分)一次函数的图象与轴交于点________;与轴交于点______.
    21、(4分)直角三角形一条直角边为6,斜边为10,则三边中点所连三角形的周长是_________面积是___________.
    22、(4分)如图,点P是直线y=3上的动点,连接PO并将PO绕P点旋转90°到PO′,当点O′刚好落在双曲线(x>0)上时,点P的横坐标所有可能值为_____.
    23、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,若再添加一个条件,就可得平行四边形ABCD是矩形,则你添加的条件是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE,DF.
    (1)试判断四边形AEDF的形状,并证明你的结论;
    (2)若∠BAC=60°,AE=6,求四边形AEDF的面积;
    (3)△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.
    25、(10分)先化简,再求值:,其中是满足不等式组的整数解.
    26、(12分)如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,即可得出答案.
    【详解】
    解:平行四边形的对角相等,对角线互相平分,两组对边平行且相等.
    故选:C.
    此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.
    2、D
    【解析】
    根据函数的定义即可判断.
    【详解】
    因为是的函数时,只能一个x对应一个y值,故D错误.
    此题主要考查函数的定义,解题的关键是熟知函数图像的性质.
    3、B
    【解析】
    关于某条直线对称的图形叫轴对称图形.绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.
    【详解】
    解:A、三角形既不是中心对称图形,也不是轴对称图形;
    B、菱形既是中心对称图形,也是轴对称图形;
    C、等腰梯形是轴对称图形;
    D、平行四边形是中心对称图形.
    故选B.
    掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    4、C
    【解析】
    首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S= ,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.
    【详解】
    解:根据反比例函数得对称性可知:
    OB=OD,AB=CD,
    ∵ 四边形ABCD的面积等于,


    ∴S四边形ABCD=2.
    故答案选:C.
    本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.
    5、A
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    解:由题意得,,
    解得.
    故选:A.
    本题考查了函数自变量的范围,一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    6、D
    【解析】
    根据中心对称图形的定义即可求解.
    【详解】
    由图可知D为中心对称图形,故选D.
    此题主要考查中心对称图形的定义,解题的关键是熟知中心对称图形的特点.
    7、A
    【解析】
    利用平行四边形的性质和勾股定理易求AC的长,进而可求出OB的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BC=AD=6,OA=OC,
    ∵AC⊥BC,AB=10,
    ∴,
    ∴,
    ∴;
    故选:A.
    本题考查了平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质和勾股定理是解题的关键.
    8、C
    【解析】
    分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
    详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
    点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、丙
    【解析】
    根据方差的定义,方差越小数据越稳定,即可得出答案.
    【详解】
    ∵S甲2=0.53,S乙2=0.51,S丙2=0.43,
    ∴S甲2>S乙2>S丙2,
    ∴三人中成绩最稳定的是丙;
    故答案为:丙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    10、1﹣1
    【解析】
    取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.
    【详解】
    如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.
    ∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.
    ∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.
    ∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值为11.
    故答案为11.
    本题考查了圆和矩形的性质,勾股定理的综合运用,解决问题的关键是根据∠DHO=90°,得出点H在以OD为直径的⊙G上.
    11、1
    【解析】
    方程两边都乘以(x+1)(x-1)化为整式方程,由增根的概念将x=1和x=-1分别代入求解可得.
    【详解】
    解:方程两边都乘以(x+1)(x﹣1),得:2(x﹣1)+k(x+1)=6,
    ∵方程有增根,
    ∴x=1或x=﹣1,
    当x=1时,2k=6,k=1;
    当x=﹣1时,﹣4=6,显然不成立;
    ∴k=1,
    故答案为1.
    本题主要考查分式方程的增根,把分式方程的增根代入整式方程是解题关键.
    12、1.
    【解析】
    在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,
    ∴AC=
    ∴AC+BC=3+4=1米.
    故答案是:1.
    13、80°
    【解析】
    先由中位线定理推出,再由平行线的性质推出,然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF,最后由三角形内角和定理求出.
    【详解】
    ∵点分别是的中点
    ∴(中位线的性质)
    又∵
    ∴(两直线平行,内错角相等)

    ∴(两直线平行,同位角相等)
    又∵
    ∴三角形是三角形
    ∵是斜边上的中线

    ∴(等边对等角)

    本题考查了中位线定理,平行线的性质,直角三角形斜边上的中线等于斜边的一半,和三角形内角和定理.熟记性质并准确识图是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)12;补图见解析;(2)72°;(3)44%.
    【解析】
    (1)根据各组频数之和等于总数可得的值;由频数分布表即可补全直方图;
    (2)用成绩大于或等于90分的人数除以总人数再乘以即可得;
    (3)用第4、5组频数除以总数即可得.
    【详解】
    解:由题意和表格,可得:,
    即a的值是12,
    补充完整的频数分布直方图如下图所示,
    成绩为这一组所对应的扇形的圆心角的度数为;
    测试成绩不低于80分为优秀,
    本次测试的优秀率是:.
    本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    15、(1);(2)AG=;(3)当 AG=CH=,BE=DF=1 时,直线 EF、GH 把四边形 ABCD 的面积四等分.
    【解析】
    (1)如图①,根据正方形的性质和全等三角形的性质即可得到结论;
    (2)如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到mb= AG•a,于是得到结论;
    (3)如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,根据平行四边形的面积公式得到= ,根据三角形的面积公式列方程即可得到结论.
    【详解】
    (1)如图①,
    ∵四边形ABCD是正方形,
    ∴∠OAG=∠OBE=45°,OA=OB,
    在△AOG与△BOE中,,
    ∴△AOG≌△BOE,
    ∴S四边形AEOG=S△AOB=S正方形 ABCD;
    故答案为;
    (2)如图②,过O作ON⊥AD于 N,OM⊥AB于M,
    ∵S△AOB=S矩形ABCD,S四边形AEOG=S矩形ABCD,
    ∴S△AOB=S四边形AEOG,
    ∵S△AOB=S△BOE+S△AOE,S四边形AEOG=S△AOG+S△AOE,
    ∴S△BOE=S△AOG,
    ∵S△BOE=BE•OM=m·b=mb,S△AOG=AG•ON=AG•a=AG•a,
    ∴mb=AG•a,
    ∴AG=;
    (3)如图③,过O作KL⊥AB,PQ⊥AD,
    则 KL=2OK,PQ=2OQ,
    ∵S平行四边形ABCD=AB•KL=AD•PQ,
    ∴3×2OK=5×2OQ,
    ∴=,
    ∵S△AOB=S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,
    ∴S△AOB=S四边形AEOG,
    ∴S△BOE=S△AOG,
    ∵S△BOE=BE•OK=×1×OK,S△AOG=AG•OQ,
    ∴×1×OK=AG•OQ,
    ∴=AG=,
    ∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.
    本题考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明 S△BOE=S△AOG是解决问题的关键.
    16、 (1)图见解析;A1 (2,4);(2) 点 A 所经过的路径长为
    【解析】
    (1)根据网格结构找出点A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;
    (2)根据网格结构找出点A、B绕点C顺时针旋转90°的对应点A2、B2的位置,然后顺次连接即可;利用勾股定理列式求出AC,再根据弧长公式列式计算即可得解.
    【详解】
    解:(1)△A1B1C1如图所示,A1(2,-4);
    (2)△A2B2C如图所示,由勾股定理得,AC==,
    点A所经过的路径长:l .
    故答案为:(1)图见解析;A1 (2,4);(2) 点 A 所经过的路径长为.
    本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    17、(1)是;(2)或.
    【解析】
    (1)直接利用常态三角形的定义判断即可;
    (2)直接利用直角三角形的性质结合常态三角形的定义得出的长,进而求出答案.
    【详解】
    解:(1),
    三边长分别是2,和4,则此三角形是常态三角形.
    故答案为:是;
    (2)中,,,点为的中点,是常态三角形,
    当,时,
    解得:,
    则,
    故,
    则的面积为:.
    当,时,
    解得:,
    则,
    故,
    则的面积为:.
    故的面积为或.
    此题主要考查了勾股定理、直角三角形斜边的中线等于斜边的一半以及新定义,正确应用勾股定理以及直角三角形的性质是解题关键.
    18、(1)C;(2)否,(x﹣2)1;(3)(x2﹣2x)(x2﹣2x+2)+1=(x﹣1)1.
    【解析】
    (1)根据分解因式的过程直接得出答案;
    (2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;
    (3)将看作整体进而分解因式即可.
    【详解】
    (1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;
    故选:C;
    (2)这个结果没有分解到最后,
    原式=(x2﹣1x+1)2=(x﹣2)1;
    故答案为:否,(x﹣2)1;
    (3)设为x2﹣2x=t,
    则原式=t(t+2)+1
    =t2+2t+1
    =(t+1)2
    =(x2﹣2x+1)2
    =(x﹣1)1.
    此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2s
    【解析】
    设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.
    【详解】
    如图,设t秒后,四边形APQB为平行四边形,
    则AP=t,QC=2t,BQ=6-2t,
    ∵AD∥BC,
    ∴AP∥BQ,
    当AP=BQ时,四边形ABQP是平行四边形,
    ∴t=6-2t,
    ∴t=2,
    当t=2时,AP=BQ=2<BC<AD,符合.
    综上所述,2秒后四边形ABQP是平行四边形.
    故答案为2s.
    此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.
    20、
    【解析】
    分别令x,y为0,即可得出答案.
    【详解】
    解:∵当时,;当时,
    ∴一次函数的图象与轴交于点,与轴交于点.
    故答案为:;.
    本题考查的知识点是一次函数与坐标轴的交点坐标,比较简单基础.
    21、12 6
    【解析】
    先依据题意作出简单的图形,进而结合图形,运用勾股定理得出AC,由三角形中位线定理计算即可求出结果
    【详解】
    解:如图,∵D,E,F分别是△ABC的三边的中点,AB=10,BC=6,∠C=90°;
    根据勾股定理得:,
    ∵D,E,F分别是△ABC的三边的中点,
    ,,
    ∴∠C=∠BED=∠EDF=90°;
    ∴△DEF的周长 ;
    △DEF的面积
    故答案为:12,6
    本题考查了三角形的中位线定理和勾股定理,掌握三角形的中位线等于第三边的一半是解题的关键.
    22、,.
    【解析】
    分点P在由在y轴的左侧和点P在y轴的右侧两种情况求解即可.
    【详解】
    当点P在由在y轴的左侧时,如图1,过点P作PM⊥x轴于点M,过点O′作O′N垂直于直线y=3于点N,
    ∵∠OPN+∠NP O′=90°,∠P O′N+∠NP O′=90°,
    ∴∠OPN=∠P O′N,
    ∵直线y=3与x轴平行,
    ∴∠POM=∠O P N ,
    ∴∠POM=∠P O′N,
    在△POM和△P O′N中,

    ∴△POM≌△P O′N,
    ∴OM= O′N,PM=PN,
    设点P的横坐标为t,则OM= O′N=-t,PM=PN=3,
    ∴GN=3+t,
    ∴点O′的坐标为(3+t,3-t),
    ∵点O′在双曲线(x>0)上,
    ∴(3+t)(3-t)=6,
    解得,t=(舍去)或t=-,
    ∴点P的横坐标为-;
    当点P在由在y轴的右侧时,
    如图2,过点O′作O′H垂直于直线y=3于点H,
    类比图1的方法易求点P的横坐标为,
    如图3,过点P作PE⊥x轴于点E,过点O′作O′F垂直于直线y=3于点F,
    类比图1的方法易求点P的横坐标为,
    综上,点P的横坐标为,.
    故答案为,.
    本题是反比例函数与几何的综合题,正确作出辅助线,构造全等三角形是解决问题的关键,解决问题时要考虑全面,不要漏解.
    23、AC=BD或∠ABC=90°.
    【解析】
    矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件.
    【详解】
    :若使ABCD变为矩形,可添加的条件是:
    AC=BD;(对角线相等的平行四边形是矩形)
    ∠ABC=90°等.(有一个角是直角的平行四边形是矩形)
    故答案为AC=BD或∠ABC=90°.
    此题主要考查的是平行四边形的性质及矩形的判定方法,熟练掌握矩形和平行四边形的联系和区别是解答此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)四边形AEDF是菱形,证明见详解;(2);(3)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形.
    【解析】
    (1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;
    (2)先证明△AEF是等边三角形,然后根据菱形的面积公式即可得到结论;
    (3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.
    【详解】
    解:如图,
    (1)四边形AEDF是菱形,证明如下:
    ∵AD平分∠BAC,
    ∴∠1=∠2,
    又∵EF⊥AD,
    ∴∠AOE=∠AOF=90°,
    ∵在△AEO和△AFO中,
    ∴△AEO≌△AFO(ASA),
    ∴EO=FO,
    ∵EF垂直平分AD,
    ∴EF、AD相互平分,
    ∴四边形AEDF是平行四边形,
    又EF⊥AD,
    ∴平行四边形AEDF为菱形;
    (2)∵四边形AEDF为菱形,
    ∴AE=AF,
    ∵∠BAC=60°,
    ∴△AEF是等边三角形,∠1=30°,
    ∴AO=,EF=AE=6,
    ∴AD=,
    ∴四边形AEDF的面积=AD•EF=××6=;
    (3)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形;
    ∵∠BAC=90°,
    ∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).
    本题主要考查了菱形的判定和性质和正方形的判定,关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.
    25、化简得: 求值得:.
    【解析】
    先解不等式组,求得不等式组的整数解,后利用分式混合运算化简分式,把使分式有意义的字母的值代入求值即可.
    【详解】
    解:因为,解得:<,
    因为为整数,所以 .
    原式


    因为,所以取,
    所以:上式.
    本题考查分式的化简求值,不等式组的解法,特别要注意求值时学生容易忽视分式有意义的条件.
    26、24
    【解析】
    试题分析:阴影部分的面积等于以AC、BC为直径的半圆的面积加上△ABC的面积减去以AB为直径的半圆的面积.
    试题解析:根据Rt△ABC的勾股定理可得:AB=10,则S==24
    考点:勾股定理
    题号





    总分
    得分
    组别
    成绩x分
    频数(人数)
    第1组
    50≤x<60
    6
    第2组
    60≤x<70
    8
    第3组
    70≤x<80
    14
    第4组
    80≤x<90
    a
    第5组
    90≤x<100
    10
    相关试卷

    龙岩市重点中学2024年九上数学开学质量跟踪监视试题【含答案】: 这是一份龙岩市重点中学2024年九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黄山市重点中学2025届数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份黄山市重点中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    鄂州市重点中学2025届数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份鄂州市重点中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,四象限;,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map