![内蒙古自治区包头市东河区第二中学2025届九年级数学第一学期开学教学质量检测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16287787/0-1729809826725/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![内蒙古自治区包头市东河区第二中学2025届九年级数学第一学期开学教学质量检测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16287787/0-1729809826758/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![内蒙古自治区包头市东河区第二中学2025届九年级数学第一学期开学教学质量检测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16287787/0-1729809826774/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
内蒙古自治区包头市东河区第二中学2025届九年级数学第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为( )
A.1B.2C.3D.4
2、(4分)如图,直线与交于点,则不等式的解集为( )
A.B.C.D.
3、(4分)在中,点、分别为边、的中点,则与的面积之比为
A.B.C.D.
4、(4分)下列计算错误的是
A.B.
C.D.
5、(4分)若分式口,的运算结果为x(x≠0),则在“口”中添加的运算符号为( )
A.+或xB.-或÷C.+或÷D.-或x
6、(4分)已知点在反比例函数的图象上,则下列点也在该函数图象上的是( )
A.B.C.D.
7、(4分)用配方法解方程,变形结果正确的是( )
A.B.C.D.
8、(4分)下面几个函数关系式中,成正比例函数关系的是 ( )
A.正方体的体积和棱长
B.正方形的周长和边长
C.菱形的面积一定,它的两条对角线长
D.圆的面积与它的半径
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇。如图是它们离A城的距离(km)与行驶时间(h)之间的函数图象。当它们行驶7(h)时,两车相遇,则乙车速度的速度为____________.
10、(4分)如图,身高1.6米的小明站在处测得他的影长为3米,影子顶端与路灯灯杆的距离为12米,则灯杆的高度为_______米.
11、(4分)已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即csC=),则AC边上的中线长是_____________.
12、(4分)若a=,b=,则=_______.
13、(4分)如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形ABCD中,,E为BD中点,延长CD到点F,使.
求证:
求证:四边形ABDF为平行四边形
若,,,求四边形ABDF的面积
15、(8分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题。
(1)一共抽取了___个参赛学生的成绩;表中a=___;
(2)补全频数分布直方图;
(3)计算扇形统计图中“B”对应的圆心角度数;
(4)某校共2000人,安全意识不强的学生(指成绩在70分以下)估计有多少人?
16、(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)图①中的值为______;
(2)求统计的这组初赛成绩数据的平均数、众数和中位数.
17、(10分)如图,在平面直角坐标系xOy中,已知直线AB:yx+4交x轴于点A,交y轴于点B.直线CD:yx﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.
(1)直接写出点B和点D的坐标;
(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;
(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.
18、(10分)如图,在平面直角坐标系中,已知一次函数的图象与过、的直线交于点P,与x轴、y轴分别相交于点C和点D.
求直线AB的解析式及点P的坐标;
连接AC,求的面积;
设点E在x轴上,且与C、D构成等腰三角形,请直接写出点E的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______.
20、(4分)如图,点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则反比例函数的解析式是______.
21、(4分)小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.
22、(4分)如图,函数()和()的图象相交于点,则不等式的解集为_________.
23、(4分)如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.
25、(10分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
(1)求证:四边形是菱形
(2)若,,求四边形的面积
26、(12分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.
(1)直接写出直线的解析式为______,______.
(2)在直线上存在点,使是的中线,求点的坐标;
(3)如图2,在轴正半轴上存在点,使,求点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
【分析】过点C作轴,设点 ,则 得到点C的坐标,根据的面积为1,得到的关系式,即可求出的值.
【解答】过点C作轴,
设点 ,则
得到点C的坐标为:
的面积为1,
即
故选D.
【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.
2、D
【解析】
观察函数图象得到,当x>-1时,直线L1:y=x+3的图象都在L2:y=mx+n的图象的上方,由此得到不等式x+3>mx+n的解集.
【详解】
解:∵直线L1:y=x+3与L2:y=mx+n交于点A(-1,b),
从图象可以看出,当x>-1时,直线L1:y=x+3的图象都在L2:y=mx+n的图象的上方,
∴不等式x+3>mx+n的解集为:x>-1,
故选:D.
本题考查一次函数与一元一次不等式的关系,关键是从函数图象中找出正确信息.
3、C
【解析】
由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,则DE∥BC,进而得出△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.
【详解】
如图所示,
∵点D、E分别为边AB、AC的中点,
∴DE为△ABC的中位线,
∴DE∥BC,DE=BC,
∴△ADE∽△ABC,
∴.
故选C.
本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.
4、A
【解析】
根据根式的计算法则逐个识别即可.
【详解】
A 错误,;
B. ,正确;
C. ,正确
D. ,正确
故选A.
本题主要考查根式的计算,特别要注意算术平方根的计算.
5、C
【解析】
分别将运算代入,根据分式的运算法则即可求出答案.
【详解】
综上,在“口”中添加的运算符号为或
故选:C.
本题考查了分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
6、D
【解析】
先把点(2,3)代入反比例函数,求出k的值,再根据k=xy为定值对各选项进行逐一检验即可.
【详解】
∵点(2,−3)在反比例函数的图象上,
∴k=2×(−3)=-1.
A、∵1×5=5≠−1,∴此点不在函数图象上;
B、∵-1×5=-5=−1,∴此点不在函数图象上;
C、∵3×2=1≠−1,∴此点不在函数图象上;
D、∵(−2)×3=-1,∴此点在函数图象上.
故选:D.
本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
7、D
【解析】
将原方程二次项系数化为1后用配方法变形可得结果.
【详解】
根据配方法的定义,将方程的二次项系数化为1, 得:
,配方得,
即:.
本题正确答案为D.
本题主要考查用配方法解一元二次方程.
8、B
【解析】
根据正比例函数的定义进行判断.
【详解】
解:A、设正方体的体积为V,棱长为a,则V=a3,不符合正比例函数的定义,故本选项错误;
B、设正方形的周长为C,边长为a,则C=4a,符合正比例函数的定义,故本选项正确;
C、设菱形面积为S,两条对角线长分别为m,n,则S=mn,不符合正比例函数的定义,故本选项错误;
D、设圆的面积为S,半径为r,则S=πr2,不符合正比例函数的定义,故本选项错误;
故选:B.
本题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、75千米/小时
【解析】
甲返程的速度为:600÷(14−6)=75km/h,设已车的速度为x,由题意得:600=7x+75,即可求解.
【详解】
解:甲返程的速度为:600÷(14−6)=75km/h,
设乙车的速度为x,
由题意得:600=7x+75,
解得:x=75,
故答案为75千米/小时.
本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
10、
【解析】
根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答.
【详解】
解:如图: ∵AB∥DE, ∴CD:BC=DE:AB,
∴1.6:AB=3:12, ∴AB=6.1米,
∴灯杆的高度为6.1米.
答:灯杆的高度为6.1米.
故答案为:6.1.
本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出灯杆的高度,体现了方程的思想.
11、或
【解析】
解:分两种情况:
①△ABC为锐角三角形时,如图1.
作△ABC的高AD,BE为AC边的中线.
∵在直角△ACD中,AC=a,csC=,
∴CD=a,AD=a.
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=a,
∴BC=BD+CD=a.
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BC•EC•csC
∴BE=;
②△ABC为钝角三角形时,如图2.
作△ABC的高AD,BE为AC边的中线.
∵在直角△ACD中,AC=a,csC=,
∴CD=a,AD=a.
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=a,
∴BC=BD+CD=a.
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BC•EC•csC
∴BE=.
综上可知AC边上的中线长是或.
12、
【解析】
先运用平方差公式把化为(a+b)(a-b),然后将a与b的值代入计算即可求出值.
【详解】
解:∵=(a+b)(a-b),
∴=2×(-2)=.
此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
13、1
【解析】
根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.
【详解】
面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.
故答案为:1.
本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)详见解析;(3).
【解析】
(1)先根据两直线平行内错角相等得出,再根据E为BD中点,和对顶角相等,根据AAS证出≌,从而证出;
(2)根据对角线互相平分的四边形是平行四边形,得出四边形ABCD是平行四边形,证出,,在结合已知条件,根据一组对边平行且相等的四边形是平行四边形,从而证出结论;
(3)根据平行四边形的对角相等得出,再根据得出,根据勾股定理得出,从而得出四边形ABDF的面积;
【详解】
证明,
,
,,
≌,
;
由可知,,
四边形ABCD是平行四边形,
,,
,
,,
四边形ABDF为平行四边形;
四边形ABDF为平行四边形,
,AF=BD=2,
,,
,
,
,
根据勾股定理可得: ,
四边形ABDF的面积.
本题考查了平行四边形的性质和判定,全等三角形的性质和判定以及勾股定理等知识点,熟练掌握相关的知识是解题的关键.
15、(1)40,6;(2)见解析;(3)72°;(4)300.
【解析】
(1)利用总人数与个体之间的关系解决问题即可.
(2)根据频数分布表画出条形图即可解决问题.
(3)利用圆心角=360°×百分比计算即可解决问题.
(4)根据成绩在70分以下的百分比乘以总人数即可.
【详解】
(1)抽取的学生成绩有14÷35%=40(个),
则a=40−(8+12+14)=6,
故答案为:40,6;
(2)直方图如图所示:
(3)扇形统计图中“B”的圆心角=360°× =72°.
(4) 成绩在70分以下: =300(人).
此题考查频数分布直方图,扇形统计图,解题关键在于看懂图中数据.
16、(1)25;(2)平均数为:,众数为:,中位数为 .
【解析】
(1)用整体1减去其它所占的百分比,即可求出a的值;
(2)根据平均数、众数和中位数的定义分别进行解答即可;
【详解】
解:(1)根据题意得:
1-20%-10%-15%-30%=25%;
则a的值是25;
故答案为:25;
(2)(人)
平均数为:.
众数为:.
按跳高成绩从低到高排列,第10个数据、第11个数据都是,所以中位数为
.
考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.
17、(1)B(0,4),D(0,-1);(2)S(x>-2);(3)存在,满足条件的点E的坐标为(8,)或(﹣8,)或(﹣2,).
【解析】
(1)利用y轴上的点的坐标特征即可得出结论;
(2)先求出点M的坐标,再分两种情况讨论:①当P在y轴右边时,用三角形的面积之和即可得出结论,②当P在y轴左边时,用三角形的面积之差即可得出结论;
(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.
【详解】
(1)∵点B是直线AB:yx+4与y轴的交点坐标,∴B(0,4).
∵点D是直线CD:yx﹣1与y轴的交点坐标,∴D(0,﹣1);
(2)如图1.由 ,解得:.
∵直线AB与CD相交于M,∴M(﹣2,).
∵B(0,4),D(0,﹣1),∴BD=2.
∵点P在射线MD上,∴分两种情况讨论:
①当P在y轴右边时,即x≥0时,S=S△BDM+S△BDP2(2+x);
②当P在y轴左边时,即-2<x<0时,S=S△BDM-S△BDP2(2-|x|);
综上所述:S=(x>-2).
(3)如图2,由(1)知,S,当S=20时,20,∴x=3,∴P(3,﹣2).
分三种情况讨论:
①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GM,设E'(m,n).
∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1).
∵M(﹣2,),∴1,∴m=8,n,∴E'(8,);
②当AB为对角线时,同①的方法得:E(﹣8,);
③当MP为对角线时,同①的方法得:E''(﹣2,).
综上所述:满足条件的点E的坐标为(8,)、(﹣8,)、(﹣2,).
本题是一次函数综合题,主要考查了三角形的面积的计算方法,平行四边形的性质,解(2)掌握三角形的面积的计算方法,解(3)的关键是分类讨论的思想解决问题.
18、(1),,P(2);(3)点E的坐标为、、或.
【解析】
(1)由点A、B的坐标,利用待定系数法即可求出直线AB的解析式,再联立直线AB、CD的解析式成方程组,通过解方程组可求出点P的坐标;
(2)过点P作PM⊥BC于点M,利用一次函数图象上点的坐标特征可求出点C的坐标,结合点A、B、P的坐标,可得出BC、OA、PM的值,利用三角形的面积公式结合S△PAC=S△PBC-S△ABC即可求出△PAC的面积;
(3)利用一次函数图象上点的坐标特征可得出点C、D的坐标,进而可得出CD的长度,分DE=DC、CD=CE、EC=ED三种情况求出点E的坐标,此题得解.
【详解】
设直线AB的解析式为,
将、代入,得:
,解得:
直线AB的解析式为.
联立直线AB、CD的解析式成方程组,得:
,解得:,
点P的坐标为
过点P作于点M,如图1所示.
点P的坐标为,
.
一次函数的图象与x轴交于点C,
点C的坐标为,
.
点A的坐标为,点B的坐标为,
,,,
.
为等腰三角形,
或或如图.
一次函数的图象与x轴、y轴分别相交于点C和点D,
点C的坐标为,点D的坐标为,
,.
当时,,
,
点E的坐标为;
当时,,
点E的坐标为或;
当时,点E与点O重合,
点E的坐标为.
综上所述:点E的坐标为、、或.
本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、三角形的面积以及等腰三角形的判定,解题的关键是:(1)由点A、B的坐标,利用待定系数法求出直线AB的解析式;(2)利用切割法找出S△PAC=S△PBC-S△ABC;(3)分DE=DC、CD=CE、EC=ED三种情况找出点E的坐标.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.5
【解析】
∵EO是AC的垂直平分线,
∴AE=CE,
设CE=x,则ED=AD-AE=4-x,
在Rt△CDE中,CE2=CD2+ED2,
即x2=22+(4-x)2,
解得x=2.5,
即CE的长为2.5,
故答案为2.5.
20、 (x<0)
【解析】
连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图,
∵AB⊥x轴,
∴OC∥AB,
∴S△OAB=S△CAB=3,
∵
∴|k|=3,
∵k<0,
∴k=-1.
∴反比例函数的解析式为 (x<0)
故答案为: (x<0).
本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
21、30
【解析】
根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.
【详解】
解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],
∴平均数为3,共10个数据,
∴x1+x2+x3+…+x10=10×3=30.
故答案为30.
本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.
22、
【解析】
写出直线在直线下方部分的的取值范围即可.
【详解】
解:由图可知,不等式的解集为;
故答案为:.
本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.
23、
【解析】
先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.
【详解】
解:∵四边形是平行四边形,
∴对角线把平行四边形分成面积相等的四部分,
观察发现:图中阴影部分面积=S四边形,
∴针头扎在阴影区域内的概率为;
故答案为:.
此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,即可得出所画图形.
【详解】
解:如图所示.
连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD =DF,BC =CG,连接EF,FG,四边形BEFG即所画图形.
本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.
25、(1)见解析;(2)S四边形ADOE =.
【解析】
(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
【详解】
(1)证明:∵矩形ABCD,
∴OA=OB=OC=OD.
∵平行四边形ADOE,
∴OD∥AE,AE=OD.
∴AE=OB.
∴四边形AOBE为平行四边形.
∵OA=OB,
∴四边形AOBE为菱形.
(2)解:∵菱形AOBE,
∴∠EAB=∠BAO.
∵矩形ABCD,
∴AB∥CD.
∴∠BAC=∠ACD,∠ADC=90°.
∴∠EAB=∠BAO=∠DCA.
∵∠EAO+∠DCO=180°,
∴∠DCA=60°.
∵DC=2,
∴AD=.
∴SΔADC=.
∴S四边形ADOE =.
考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
26、(1),22;(2);(3)
【解析】
(1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;
(2)作轴于,轴于,易得,则,
再将x=4代入得到y=11,所以;
(3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.
【详解】
解:(1)直线沿x轴向右平移2个单位长度,则
y=-2(x-2)-7
=-2x-3
将和联立,得
解得
易得
故答案为:,22;
(2)作轴于,轴于,
∵
∴,,
∵为的中线,
∴,
∵,
∴,
∴,
在中,
当时,,
∴.
(3)由(1)得,,
∴, ,
在轴正半轴上取一点,使,
∵,
∴,
∴,
∵,
∴,
∴,
在中,由勾股定理可得:,
∴.
本题考查了一次函数和几何的综合,熟练掌握一次函数的图象和性质是解题关键.
题号
一
二
三
四
五
总分
得分
2025届内蒙古包头市东河区数学九上开学监测模拟试题【含答案】: 这是一份2025届内蒙古包头市东河区数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
[数学][二模]内蒙古自治区包头市东河区2024年九年级中考二模试题(解析版): 这是一份[数学][二模]内蒙古自治区包头市东河区2024年九年级中考二模试题(解析版),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
32,2024年内蒙古自治区包头市东河区九年级中考二模数学试题: 这是一份32,2024年内蒙古自治区包头市东河区九年级中考二模数学试题,共12页。