辽宁省台安县2024年数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为( )
A.45°B.15°C.10°D.125°
2、(4分)要使二次根式有意义,则的取值范围是( )
A.B.C.D.
3、(4分)已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是( )
A.(3,4),(3,﹣4) B.(﹣3,﹣4),(3,4)
C.(3,﹣4),(﹣3,﹣4) D.(3,4),(﹣3,﹣4)
4、(4分)如图,正方形的边长为3,将正方形折叠,使点落在边上的点处,点落在点处, 折痕为。若,则的长是
A.1B.C.D.2
5、(4分)如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y的二元一次方程组的解是( )
A.B.C.D.
6、(4分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为( )
A.150°B.130°C.120°D.100°
7、(4分)如果,下列各式中不正确的是
A.B.C.D.
8、(4分)一次考试考生约2万名,从中抽取500名考生的成绩进行分析,这个问题的样本是( )
A.500B.500名C.500名考生D.500名考生的成绩
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点A(),B()是一次函数图象上的两点,当时,__.(填“>”、“=”或“<”)
10、(4分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.
11、(4分)若整数x满足|x|≤3,则使为整数的x的值是 (只需填一个).
12、(4分)关于的方程是一元二次方程,那么的取值范围是_______.
13、(4分)若最简二次根式与是同类二次根式,则a=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形ABCD中,∠D=90°,AB=13,BC=12,CD=4,AD=3.
求:(1)AC的长度;
(2)判断△ACB是什么三角形?并说明理由?
(3)四边形ABCD的面积。
15、(8分)已知:a、b、c满足
求:(1)a、b、c的值;
(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
16、(8分)如图,在4×3的正方形网格中,每个小正方形的边长都为1.
(1)线段AB的长为 ;
(2)在图中作出线段EF,使得EF的长为,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.
17、(10分)甲骑自行年,乙乘坐汽车从A地出发沿同一路线匀速前往B地,甲先出发.设甲行驶的时间为x(h),甲、乙两人距出发点的路程S甲(km)、S乙(km)关于x的函数图象如图1所示,甲、乙两人之同的距离y(km)关于x的函数图象如图2所示,请你解决以下问题:
(1)甲的速度是__________km/h,乙的速度是_______km/h;
(2)a=_______,b=_______;
(3)甲出发多少时间后,甲、乙两人第二次相距7.5km?
18、(10分)如图,是一位护士统计一位病人的体温变化图,请根据统计图回答下列问题:
(1)病人的最高体温是达多少?
(2)什么时间体温升得最快?
(3)如果你是护士,你想对病人说____________________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,中,是的中点,平分,于点,若,,则的长度为_____.
20、(4分)在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.
21、(4分)若直角三角形的两边长分别为1和2,则斜边上的中线长为_____.
22、(4分)一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.
23、(4分)分解因式: .
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)因式分解
(2)解不等式组
25、(10分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(2)若它们出发第5小时时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
26、(12分)下表给出三种上宽带网的收费方式.
设月上网时间为,方式的收费金额分别为,直接写出的解析式,并写出自变量的取值范围;
填空:当上网时间 时,选择方式最省钱;
当上网时间 时,选择方式最省钱;
当上网时间 时,选择方式最省钱;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.
【详解】
是等边三角形,
,,
四边形是正方形,
,,
,,
,
.
故选:.
本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.
2、D
【解析】
根据二次根式有意义的条件进行求解即可.
【详解】
∵二次根式有意义
∴
解得
故答案为:D.
本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.
3、D
【解析】
直接利用关于x,y轴对称点的性质分别得出答案.
【详解】
∵点M的坐标为(3,﹣4),∴与点M关于x轴和y轴对称的M1、M2的坐标分别是:(3,4),(﹣3,﹣4).
故选D.
本题考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题的关键.
4、B
【解析】
设DF为x,根据折叠的性质,利用Rt△A’DF中勾股定理即可求解.
【详解】
∵A’C=2,正方形的边长为3,∴A’D=1,
设DF=x,∴AF=3-x,
∵折叠,∴A’F=AF=3-x,
在Rt△A’DF中,A’F2=DF2+A’D2,
即(3-x)2=x2+12,
解得x=
故选B.
此题主要考查勾股定理的应用,解题的关键是熟知正方形的性质及勾股定理的应用.
5、C
【解析】
先利用直线y=x+2确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标得到答案.
【详解】
把P(m,4)代入y=x+2得:m+2=4,解得:m=2,即P点坐标为(2,4),所以二元一次方程组的解为.
故选C.
本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
6、C
【解析】
试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.
考点:平行四边形的性质.
7、B
【解析】
根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.
【详解】
、,则,所以选项的结论正确;
、,则,所以选项的结论错误;
、,则,所以选项的结论正确;
、,则,所以选项的结论正确.
故选.
本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.
8、D
【解析】
样本是指从总体中抽取的部分个体,据此即可判断
【详解】
由题可知,所考查的对象为考生的成绩,所以从总体中抽取的部分个体为500名考生的成绩.
故答案为:D
本题考查了样本的概念,明确题中考查的对象是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<
【解析】
试题解析:∵一次函数y=-1x+5中k=-1<0,
∴该一次函数y随x的增大而减小,
∵x1>x1,
∴y1<y1.
10、六
【解析】
n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.
【详解】
设多边形的边数为n,依题意,得:
(n﹣2)•180°=2×360°,
解得n=6,
故答案为:六.
本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.
11、﹣2(答案不唯一)
【解析】
试题分析:∵|x|≤1,∴﹣1≤x≤1.
∵x为整数,∴x=﹣1,﹣2,﹣1,0,1,2,1.
分别代入可知,只有x=﹣2,1时为整数.
∴使为整数的x的值是﹣2或1(填写一个即可).
12、
【解析】
根据一元二次方程的概念及一般形式:即可求出答案.
【详解】
解:∵关于的方程是一元二次方程,
∴二次项系数,
解得;
故答案为.
本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.
13、1
【解析】
根据题意,它们的被开方数相同,列出方程求解.
【详解】
∵二次根式与是同类二次根式,
∴3a-5=a+3,解得a=1.
故答案是:1.
考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
三、解答题(本大题共5个小题,共48分)
14、(1)5(2)直角三角形,理由见解析(3)36
【解析】
在直角三角形ABD中,利用勾股定理求出BD的长,再利用勾股定理的逆定理得到三角形BCD为直角三角形,根据四边形ABCD的面积=直角三角形ABD的面积+直角三角形BCD的面积,即可求出四边形的面积.
【详解】
(1)在Rt△ACD中,CD=4,AD=3
由勾股定理,得CD +AD=AC
∴AC= =5;
(2)△ACD是直角三角形;
理由如下:∵AB=13,BC=12,AC=5
∴BC+AC=12+5=169AB=13=169
∴BC+AC=AB
∴△ACB是Rt△,∠ACB=90°;
(3)S四边形ABCD=S△ABC+S△ACD
=×12×5+×4×3=30+6=36.
此题考查勾股定理的逆定理,勾股定理,解题关键在于求出BD的长
15、(1)a=2,b=1,c=3;(2)能,1+1.
【解析】
(1)根据非负数的性质列式求解即可;
(2)根据三角形的任意两边之和大于第三边进行验证即可.
【详解】
解:(1)根据题意得,a-=0,b-1=0,c-3=0,
解得a=2,b=1,c=3;
(2)能.
∵2+3=1>1,
∴能组成三角形,
三角形的周长=2+1+3=1+1.
本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,三角形的三边关系.
16、(1);(2)见解析。
【解析】
(1)利用勾股定理求出AB的长即可;
(2)根据勾股定理的逆定理,即可作出判断.
【详解】
(1)AB=;
(2)如图,EF=,CD=,
∵CD2+AB2=8+5=13,EF2=13,
∴CD2+AB2=EF2,
∴以AB、CD、EF三条线可以组成直角三角形.
本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.
17、 (1)甲的速度是10km/h,乙的速度是25km/h ;(2),;(3)
【解析】
(1)根据函数图象中的数据,由路程除以时间可求得甲乙的速度;
(2)根据a、b点的实际意义列出方程求解即可;
(3)由图象可知甲乙相距7.5km有两种情况,第二次相距7.5km时,汽车在自行车的前面,据此列出方程即可解答本题.
【详解】
(1)甲的速度为:25÷2.5=10km/h,乙的速度是25÷(2-1)=25÷1=25km/h;
故答案为:10,25;
(2)由题意得:25(a-1)=10a
解得;
由题意可知,当汽车到达B地时,两人相距bkm.
∴b=25-10×2=5
故答案为:,
(3)甲、乙两人第二次相距7.5km是在甲乙相遇之后,汽车在自行车的前面,设甲出发xh,甲、乙两人第二次相距7.5km,
由题意可得:25(x-1)-10x=7.5,
解得:.
答:甲出发后,甲乙两人第二次相距7.5km.
本题考查一次函数的应用,解答本题的关键是明确题意,准确识别函数图像并利用方程思想解答.
18、(1)1.1℃;(2)14-18;(3)注意身体的健康
【解析】
根据折线图可得,(1)这天病人的最高体温即折线图的最高点是1.1°C;
(2)14-18时,折线图上升得最快,故这段时间体温升得最快;
(3)根据折线图分析即可得出答案,答案不唯一,如注意身体的健康,符合折线图即可.
【详解】
(1)由图可知:病人的最高体温是达1.1℃;
(2)由图可知:体温升得最快的时间段为:14-18;
(3)注意身体的健康(只要符合图形即可,答案不唯一)
本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长的速度.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.
【详解】
解:如图,延长BD交AB于F,
∵AD平分∠BAC,
∴∠BAD=∠FAD,
∵BD⊥AD,
∴∠ADB=∠ADF=90°,
在△ADF和△ADB中
∴△ADF≌△ADB(ASA),
∴AF=AB,BD=FD,
∴CF=AC-AB=6-4=2cm,
又∵点E为BC的中点,
∴DE是△BCF的中位线,
.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.
20、2.5
【解析】
根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.
【详解】
解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,
在△ABC中,AB=10,CA=8,BC=6,
∴,
∴△ABC是直角三角形,即AC⊥BC,
∵DI∥BC,
∴DE⊥AC,
∵∠BAC的平分线与∠BCA的平分线交于点I,
∴点I是三角形的内心,则,
在△ABC中,根据等面积的方法,有
,设
即,
解得:,
∵DI∥BC,
∴,∠DIB=∠CBI=∠DBI,
∴DI=BD,
∴,
解得:BD=2.5,
∴DI=2.5;
故答案为:2.5.
本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.
21、1或
【解析】
分①2是直角边,利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答;②2是斜边时,根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
①若2是直角边,则斜边=,
斜边上的中线=,
②若4是斜边,则斜边上的中线=,
综上所述,斜边上的中线长是1或.
故答案为1或.
本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,难点在于分情况讨论.
22、15或16或1
【解析】
试题分析:根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为1,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或1.
故答案为15,16或1.
考点:多边形内角和与外角和.
23、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
考点:提公因式法和应用公式法因式分解.
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
(1)对原式进行整理再利用平方差公式分解因式得出即可.
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
(1)解:原式
(2)解1式得:
解2式得:
∴
此题主要考查了公式法分解因式及解不等式组,熟练应用平方差公式与掌握解不等式的口诀是解题关键.
25、(1) ;(2)140千米,y乙=300﹣28x ,(0≤x≤);(3)或小时
【解析】
(1)由图知,该函数关系在不同的时间里表现出不同的关系,需分段表达,可根据待定系数法列方程,求函数关系式.(2)根据题意求出乙车速度,列出y乙与行驶时间x的函数关系式;(3)联立方程分段求出相遇时间.
【详解】
(1)由图象可知,甲车由A到B的速度为300÷3=100千米/时,由B到A的速度为千米/时,
则当0≤x≤3时:y甲=100x,
当3≤x≤时:y甲=300﹣80(x﹣3)=﹣80x+540,
∴y甲=,
(2)当x=5时,y甲=﹣80×5+540=140(千米),
则第5小时时,甲距离A140千米,则乙距离B140千米,则乙的速度为140÷5=28千米/时,
则y乙=300﹣28x (0≤x≤),
(3)当0≤x≤3时,
100x=300﹣28x,
解得x=.
当3≤x≤时,
300﹣28x=﹣80x+540,
x=.
∴甲、乙两车相遇的时间为或小时,
本题考查了一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答本题.
26、;;;不超过; 超过而不超过; 超过.
【解析】
(1)根据表格写出函数的解析式,注意分段表示函数的解析式.
(2)根据函数的解析数求解 的交点,进而可得最省钱的取值范围.
【详解】
解:
根据一次函数y=3x-65与y=40的交点即可得到A最省钱的时间;
解得
所以当不超过时,选择方式最省钱
同理可得计算出直线y=3x-140与y=100的交点即可得到最省钱
解得
所以当超过而不超过,选择方式B最省钱
根据前面两问可得当超过.选择方式C最省钱
本题主要考查一次函数的应用问题,关键在于求解最省钱的取值范围,着重在于求解交点坐标.
题号
一
二
三
四
五
总分
得分
批阅人
收费方式
月使用费/元
包时上网时间/
超时费/(元/)
不限时
辽宁省鞍山市台安县2024-2025学年九上数学开学检测模拟试题【含答案】: 这是一份辽宁省鞍山市台安县2024-2025学年九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
阿里市2024-2025学年九上数学开学教学质量检测试题【含答案】: 这是一份阿里市2024-2025学年九上数学开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届辽宁省抚顺县数学九上开学质量检测模拟试题【含答案】: 这是一份2025届辽宁省抚顺县数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。