辽宁省沈阳126中学2024-2025学年数学九上开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,点在反比例函数的图象上,过点作轴、轴的垂线,垂足分别为点、,若,,则的值为( )
A.-3B.-4.5C.6D.-6
2、(4分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正确的编号是( )
A.①②B.②③C.①②③D.①②③④
3、(4分)二次根式有意义的条件是
A.B.C.D.
4、(4分)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
A.B.C.D.
5、(4分)下列语句中,属于命题的是( )
A.任何一元二次方程都有实数解B.作直线 AB 的平行线
C.∠1 与∠2 相等吗D.若 2a2=9,求 a 的值
6、(4分)某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为( )
A.B.
C.D.
7、(4分)设x1、x2是方程x²+x-1=0的两根,则x1+x2=( )
A.-3B.-1C.1D.3
8、(4分)一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90,则这五个数据的中位数是( )
A.90B.95C.100D.105
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数的自变量的取值范围是 .
10、(4分)如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .
11、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.
12、(4分)若b为常数,且﹣bx+1是完全平方式,那么b=_____.
13、(4分)一次函数y=-4x-5的图象不经过第_____________象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.
(1)求证:四边形AECF是菱形;
(2)若AC=4,BE=1,直接写出菱形AECF的边长.
15、(8分)某校学生会调查了八年级部分学生对“垃圾分类”的了解程度(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性
的方案是________;
方案一:调查八年级部分男生;
方案二:调查八年级部分女生;
方案三:到八年级每个班去随机调查一定数量的学生.
(2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图,如图①、图②.请你根据图中信息,回答下列问题:
①本次调查学生人数共有_______名;
②补全图①中的条形统计图,图②中了解一点的圆心角度数为_______;
③根据本次调查,估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有_______名.
16、(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如右表格(部分信息未给出):根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中,的值;
(3)若该中学有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?
17、(10分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.
(1)求证:△AEF≌△DEB;
(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.
18、(10分)如图,在△ABC中,∠C=90°, ∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,又分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D.
求证:(1)点D在AB的中垂线上.
(2)当CD=2时,求△ABC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______
20、(4分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为____.
21、(4分)如图,在□ABCD中,AB=5,AD=6,将□ABCD沿AE翻折后,点B恰好与点 C重合,则折痕AE的长为____.
22、(4分)如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.
23、(4分)在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:
请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,,点D是BC边的中点,于点E,于点F.
(1)________(用含α的式子表示)
(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形,并写出DM与DN的数量关系,请说明理由.
25、(10分)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
26、(12分)某中学积极开展跳绳锻炼,一次体育測试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和頻数分布直方图,如图:
(1)补全频数分布表和频数分布直方图;
(2)表中组距是 次,组数是 组;
(3)跳绳次数在范围的学生有 人,全班共有 人;
(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由,可以得出矩形ABOC的面积,矩形ABOC的面积等于点A的横纵坐标的积的绝对值,即可得出答案.
【详解】
设A点的坐标为(x,y)
由,可得矩形ABOC的面积=1.5×4=6
∴
又∵函数图像在第二象限
故答案选择D.
本题考查的是反比例函数的几何意义,在反比例函数图像中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.
2、D
【解析】
易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.
【详解】
解:甲的速度为:8÷2=4(米/秒);
乙的速度为:500÷100=5(米/秒);
b=5×100﹣4×(100+2)=92(米);
5a﹣4×(a+2)=0,
解得a=8,
c=100+92÷4=123(秒),
∴正确的有①②③④.
故选D.
考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.
3、A
【解析】
根据:二次根式被开方数必须是非负数才有意义.
【详解】
由m-2≥0得,.
故选A
本题考核知识点:二次根式有意义条件. 解题关键点:熟记二次根式有意义条件.
4、B
【解析】
试题分析:∵一次函数y=kx+b的图象经过一、二、四象限
∴k<0,b>0
∴直线y=bx-k经过一、二、三象限
考点:一次函数的性质
5、A
【解析】
用命题的定义进行判断即可(命题就是判断一件事情的句子).
【详解】
解:A项是用语言可以判断真假的陈述句,符合命题定义,是命题,B、C、D三项均不是判断一件事情的句子,都不是命题,故选A.
本题考查了命题的定义:命题就是判断一件事情的句子. 一般来说,命题都可以表示成“如果…那么…”的形式,如本题中的A项就可表示成“如果一个方程是一元二次方程,那么这个方程有实数解”,而其它三项皆不可.
6、C
【解析】
设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.
7、B
【解析】
直接根据根与系数的关系求解.
【详解】
解:根据题意,得x1+x2=-1.
故选:B.
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.
8、B
【解析】
试题分析:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.将数据按照从小到大的顺序排列为:90,90,1,105,110,根据中位数的概念可得中位数为1.故答案选B.
考点:中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>1
【解析】
解:依题意可得,解得,所以函数的自变量的取值范围是
10、2
【解析】
如图,过A点作AE⊥y轴,垂足为E,
∵点A在双曲线上,∴四边形AEOD的面积为1
∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3
∴四边形ABCD为矩形,则它的面积为3-1=2
11、70°
【解析】
在平行四边形ABCD中,∠C=∠A,则求出∠A即可.
【详解】
根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,
∵∠A=70°,
∴∠C=70°.
故答案为:70°.
此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.
12、±1
【解析】
根据完全平方式的一般式,计算一次项系数即可.
【详解】
解:∵b为常数,且x2﹣bx+1是完全平方式,
∴b=±1,
故答案为±1.
本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.
13、一
【解析】
根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.
【详解】
∵一次函数y=-4x-5,k=-4<0,b=-5<0,
∴该函数经过第二、三、四象限,不经过第一象限,
故答案为:一.
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)
【解析】
(1)根据正方形的性质和菱形的判定解答即可;
(2)根据正方形和菱形的性质以及勾股定理解答即可.
【详解】
(1)证明:∵正方形ABCD的对角线AC,BD相交于点O,
∴OA=OC,OB=OD,
AC⊥BD.
∵BE=DF,
∴OB+BE=OD+DF,即OE=OF.
∴四边形AECF是平行四边形.
∵AC⊥EF,
∴四边形AECF是菱形.
(2)∵AC=4,
∴OA=2,
∴OB=2,
∴OE=OB+BE=3,
∴AE= (勾股定理)
此题考查了菱形的性质和判定,解题时要注意选择适宜的判定方法.
15、(1)方案三;(2)①120;②216;③150.
【解析】
(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)①由不了解的人数和所占的比例可得出调查总人数;
②先求出了解一点的人数和所占比例,再用360°乘以这个比例可得圆心角度数;
③用八年级学生人数乘以比较了解“垃圾分类”的学生比例可得答案。
【详解】
解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)①不了解的有12人,占10%,所以本次调查学生人数共有12÷10%=120名;
②了解一点的人数是120-12-36=72人,所占比例为,所以了解一点的圆心角度数为360°×60%=216°,补全的图形如下图
故答案为:216;
③500×=150名
故答案为:150
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
16、(1)50人;(2)0.2、10;(3)400人
【解析】
(1)由C选项的频数及其频率可得总人数;
(2)根据频率=频数÷总人数可分别求得m、n的值;
(3)用总人数乘以样本中C、D选项的频率和即可得.
【详解】
(1)被调查的总人数为5÷0.1=50人;
(2)m=10÷50=0.2、n=50×0.2=10;
(3)估计全校学生中利用手机购物或玩游戏的共有800×(0.1+0.4)=400人.
考查频数分布表,解题的关键是掌握频率=频数÷总人数及样本估计总体思想的运用.
17、(1)证明见解析;(2)四边形ADCF是矩形,证明见解析.
【解析】
【分析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;
(2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.
【详解】(1)∵E是AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,∠EAF=∠EDB,
∴△AEF≌△DEB(AAS);
(2)连接DF,
∵AF∥CD,AF=CD,
∴四边形ADCF是平行四边形,
∵△AEF≌△DEB,
∴BE=FE,
∵AE=DE,
∴四边形ABDF是平行四边形,
∴DF=AB,
∵AB=AC,
∴DF=AC,
∴四边形ADCF是矩形.
【点睛】本题考查了全等三角形的判定与性质、矩形的判定等,熟练掌握全等三角形的判定与性质是解题的关键.
18、(1)见解析;(2)6
【解析】
(1)根据作图可知AD是∠CAB平分线,然后由等角对等边和线段垂直平分线的性质可得结论;
(2)根据含30度角的直角三角形的性质求出AD和AC,进而求出BC的长即可解决问题.
【详解】
解:(1)根据作图可知AD是∠CAB平分线,
∵∠C=90°, ∠B=30°,
∴∠DAB=∠DAC=∠B=30°,
∴DA=DB,
∴点D在AB的中垂线上;
(2)∵∠DAC=30°,CD=2,
∴AD=2CD=4,
∴,BD=AD=4,
∴BC=CD+BD=6,
∴.
本题考查了尺规作角平分线、等角对等边、线段垂直平分线的性质、含30度角的直角三角形的性质、勾股定理以及三角形的面积计算,灵活运用各性质进行推理计算是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、()
【解析】
根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.
【详解】
解:∵△AOB是等腰直角三角形,OA=1,
∴AB=OA=1,
∴B(1,1),
将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,
再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,
∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),
∵2÷4=503…1,
∴点B2与B1同在一个象限内,
∵-4=-22,8=23,16=24,
∴点B2(22,-22).
故答案为:(22,-22).
此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.
20、1
【解析】
由点A的坐标利用待定系数法即可求出正比例函数的解析式,再利用一次函数图象上点的坐标特征可求出m的值,此题得解.
【详解】
设正比例函数的解析式为y=kx(k≠0),
∵该正比例函数图象经过点A(3,﹣6),
∴﹣6=3k,解得:k=﹣1,
∴正比例函数的解析式为y=﹣1x.
∵点B(m,﹣4)在正比例函数y=﹣1x的图象上,
∴﹣4=﹣1m,
解得:m=1.
故答案为:1.
本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
21、1
【解析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.
【详解】
解:∵翻折后点B恰好与点C重合,
∴AE⊥BC,BE=CE,
∵BC=AD=6,
∴BE=3,
∴AE=.
故答案为:1.
本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.
22、1260
【解析】
首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.
【详解】
解:∵多边形的每一个外角都等于,
∴它的边数为:,
∴它的内角和:,
故答案为:.
此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.
23、0.60
【解析】
计算出平均值即可解答
【详解】
解:由表可知,当n很大时,摸到白球的频率将会接近0.60;
故答案为:0.60;
此题考查利用频率估计概率,解题关键在于求出平均值
二、解答题(本大题共3个小题,共30分)
24、 (1);(2) ,理由见解析
【解析】
(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°-,然后利用互余可得到∠EDB=;
(2)①如图,利用∠EDF=180°-2画图;
②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°-2,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;
【详解】
解:(1)∵AB=AC,
∴∠B=∠C=(180°-∠A)=90°-,
而DE⊥AB,
∴∠DEB=90°,
∴∠EDB=90°-∠B=90°-(90°-)=;
故答案为:;
(2)①补全图形如图所示.
②结论:.
理由;在四边形AEDF中,,于点E,于点F,
∴,
连接AD,∵点D是BC边的中点,,
∴,
又∵射线DM绕点D顺时针旋转与AC边交于点N,
∴,
∵,
∴,
∴,
∴.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质,全等三角形的判定和性质,解题的关键是利用数形结合区找出边和角的关系,然后解决问题.
25、(1)证明见解析;(2)5cm.
【解析】
(1)根据题意可知AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,从而得到结论;
(2)根据题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,由勾股定理可得(4a)2+(3a)2=252,再解即可.
【详解】
(1)根据题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS);
(2)由题意得:AD=4a,BE=3a,
由(1)得:△ADC≌△CEB,
∴DC=BE=3a,
在Rt△ACD中:AD2+CD2=AC2,
∴(4a)2+(3a)2=252,
∵a>0,
解得a=5,
答:砌墙砖块的厚度a为5cm.
考点1.:全等三角形的应用2.勾股定理的应用.
26、(1)见解析,(2)表中组距是20次,组数是7组;(3)31人,50人;(4)26%
【解析】
(1)利用分布表和频数分布直方图可得到成绩在60≤x≤80的人数为2人,,成绩在160≤x≤180的人数为4人,然后补全补全频数分布表和频数分布直方图;
(2)利用频数分布表和频数分布直方图求解;
(3)把和的频数相加可得到跳绳次数在100≤x<140范围的学生数,把全部7组的频数相加可得到全班人数;
(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.
【详解】
解:(1)如图,成绩在的人数为2人,成绩在的人数为4人,
(2)观察图表即可得:表中组距是20次,组数是7组;
(3)∵的人数为18人,的人数为13人,
∴跳绳次数在范围的学生有18+13=31(人),
全班人数为 (人)
(4)跳绳次数不低于140次的人数为,
所以全班同学跳绳的优秀率.
本题考查了频(数)率分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
选项
频数
频率
A
10
B
0.2
C
5
0.1
D
0.4
E
5
0.1
摸球的次数n
100
200
300
500
800
1 000
3 000
摸到白球的次数m
65
124
178
302
481
620
1845
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.620
0.615
次数
频数
4
18
13
8
1
辽宁省沈阳市2024-2025学年九上数学开学达标测试试题【含答案】: 这是一份辽宁省沈阳市2024-2025学年九上数学开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省沈阳市126中学2025届九年级数学第一学期开学调研模拟试题【含答案】: 这是一份辽宁省沈阳市126中学2025届九年级数学第一学期开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
辽宁省灯塔市第二初级中学2024-2025学年九上数学开学达标检测试题【含答案】: 这是一份辽宁省灯塔市第二初级中学2024-2025学年九上数学开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。