辽宁省盘锦市第一中学2024-2025学年九上数学开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)数据3,7,2,6,6的中位数是( )
A.6B.7C.2D.3
2、(4分)已知a是方程的一个根,则代数式的值是( )
A.6B.5C.D.
3、(4分)以下说法正确的是( )
A.在同一年出生的400人中至少有两人的生日相同
B.一个游戏的中奖率是1%,买100张奖券,一定会中奖
C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件
D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是
4、(4分)若关于的分式方程有增根,则的值是( )
A.或B.
C.D.
5、(4分)下列运算正确的是( )
A.=﹣2B.(2)2=6C.D.
6、(4分)已知四边形,有下列四组条件:①,;②,;③,;④,.其中不能判定四边形为平行四边形的一组条件是( )
A.①B.②C.③D.④
7、(4分)如图,E,F分别是正方形ABCD边AD、BC上的两定点,M是线段EF上的一点,过M的直线与正方形ABCD的边交于点P和点H,且PH=EF,则满足条件的直线PH最多有( )条
A.1B.2C.3D.4
8、(4分)已知一次函数的图象不经过第三象限,则、的符号是( )
A.,B.,C.,D.,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
10、(4分)某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为__________.
11、(4分)一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.
12、(4分)若对于的任何值,等式恒成立,则__________.
13、(4分)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=___时,△PQF为等腰三角形.
三、解答题(本大题共5个小题,共48分)
14、(12分)2019年3月21日,长春市遭遇了一次大量降雪天气,市环保系统出动了多辆清雪车连夜清雪,已知一台大型清雪车比一台小型清雪车每小时多清扫路面6千米,一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同.求一台小型清雪车每小时清扫路面的长度.
15、(8分)已知:
(1)在直角坐标系中画出△ABC;
(2)求△ABC的面积;
(3)设点P在x轴上,且△ABP与△ABC的面积相等,请直接写出点P的坐标.
16、(8分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:1.请根据下表信息,确定谁会被聘选为班长:
17、(10分)如图,、分别为的边、的中点,,延长至点,使得,连接、、.若时,求四边形的周长.
18、(10分)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.
20、(4分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.
21、(4分)方程-x=1的根是______
22、(4分)在英文单词 believe 中,字母“e”出现的频率是_______.
23、(4分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某花卉种植基地准备围建一个面积为100平方米的矩形苗圃园园种植玫瑰花,其中一边靠墙,另外三边用29米长的篱笆围成.已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示),求这个苗圃园垂直于墙的一边长为多少米?
25、(10分)如果一个多位自然数的任意两个相邻数位上,右边数位上的数总比左边数位上的数大1,则我们称这样的自然数叫“美数”,例如:123,3456,67,…都是“美数”.
(1)若某个三位“美数”恰好等于其个位的76倍,这个“美数”为 .
(2)证明:任意一个四位“美数”减去任意一个两位“美数”之差再减去1得到的结果定能被11整除;
(3)如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,则我们称这样的自然数叫“妙数”,若任意一个十位为为整数)的两位“妙数”和任意一个个位为为整数)的两位“美数”之和为55,则称两位数为“美妙数”,并把这个“美妙数”记为,则求的最大值.
26、(12分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:将数据小到大排列 2,3,6,6,7,
所以中位数为6,
故选A.
本题考查了中位数,正确理解中位数的意义是解题的关键.
2、B
【解析】
根据方程的根的定义,把x=a代入方程求出a2-3a的值,然后整体代入代数式进行计算即可得解.
【详解】
解:∵a是方程x2-3x-1=0的一个根,
∴a2-3a-1=0,
整理得,a2-3a=1,
∴2a2-6a+3=2(a2-3a)+3
=2×1+3
=5,
故选:B.
本题考查了一元二次方程的解,利用整体思想求出a2-3a的值,然后整体代入是解题的关键.
3、A
【解析】
A.一年有365天或366天,所以400人中一定有两人同一天出现,为必然事件.故正确
B.买了100张奖券可能中奖且中奖的可能性很小,故错误
C.一副扑克牌中,随意抽取一张是红桃K,这是不确定事件,故错误
D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是;故错误
故选A
4、C
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,由最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程,满足即可.
【详解】
解:
方程两边都乘x-4,
得
∵原方程有增根,
∴最简公分母x-4=0,
解得x=4,
当x=4时,,
解得:
故选:C.
本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:①让最简公分母为0确定可能的增根;②化分式方程为整式方程;③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.
5、D
【解析】
根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.
【详解】
A:=2,故本选项错误;
B:(2)2=12,故本选项错误;
C:与不是同类二次根式,不能合并,故本选项错误;
D:根据二次根式乘法运算的法则知本选项正确,
故选D.
本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.
6、D
【解析】
①由有两组对边分别平行的四边形是平行四边形,可证得四边形ABCD是平行四边形;
②由有两组对边分别相等的四边形是平行四边形,可证得四边形ABCD是平行四边形;
③由一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,
④由已知可得四边形ABCD是平行四边形或等腰梯形.
【详解】
解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判定这个四边形是平行四边形;
②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判定这个四边形是平行四边形;
③根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知③能判定这个四边形是平行四边形;
④由一组对边平行,一组对边相等的四边形不一定是平行四边形,可知④错误;
故给出的四组条件中,①②③能判定这个四边形是平行四边形,
故选:D.
此题考查了平行四边形的判定.注意熟记平行四边形的判定定理是解此题的关键.
7、C
【解析】
如图1,过点B作BG∥EF,过点C作CN∥PH,利用正方形的性质,可证得AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,再证明BG=CN,利用HL证明Rt△ABG≌Rt△CBN,根据全等三角形的对应角相等,可知∠ABG=∠BCN,然后证明PH⊥EF即可,因此过点M作EF的垂线满足的有一条直线;图2中还有2条,即可得出答案.
【详解】
解:如图1,过点B作BG∥EF,过点C作CN∥PH,
∵正方形ABCD,
∴AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,
∴四边形BGEF,四边形PNCH是平行四边形,
EF=BG,PH=CN,
∵PH=EF,
∴BG=CN,
在Rt△ABG和Rt△CBN中,
∴Rt△ABG≌Rt△CBN(HL)
∴∠ABG=∠BCN,
∵∠ABG+∠GBC=90°
∴∠BCN+∠GBC=90°,
∴BG⊥CN,
∴PH⊥EF,
∴过点M作EF的垂线满足的有一条直线;
如图2
图2中有两条P1H1,P2H2,
所以满足条件的直线PH最多有3条,
故答案为:C
本题考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.
8、C
【解析】
根据图象在坐标平面内的位置关系确定,的取值范围,从而求解.
【详解】
解:函数的图象不经过第三象限,,
直线与轴正半轴相交或直线过原点,
时.
故选:C.
本题主要考查一次函数图象在坐标平面内的位置与、的关系.
时,直线必经过一、三象限;时,直线必经过二、四象限;时,直线与轴正半轴相交;时,直线过原点;时,直线与轴负半轴相交.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据题意,结合图形可知,所求单价即为加权平均数,利用加权平均数的定义计算解答即可
【详解】
由加权平均数得,24×25%+20×1%+10×60%=6+3+6=1,
故答案为:1.
考查了加权平均数的定义,熟记加权平均数的定义,掌握有理数的混合运算法则是解题关键.
10、59
【解析】
由题意得,,解得a=59.
故答案为59.
11、m<1
【解析】
一次函数y=kx+b(k≠2)的k<2时,y的值随x的增大而减小,据此可解答.
【详解】
∵一次函数y=(m-1)x+5,y随着自变量x的增大而减小,
∴m-1<2,
解得:m<1,
故答案是:m<1.
本题考查了一次函数图象与系数的关系.一次函数y=kx+b图象与y轴的正半轴相交⇔b>2,一次函数y=kx+b图象与y轴的负半轴相交⇔b<2,一次函数y=kx+b图象过原点⇔b=2.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.
12、
【解析】
先通分,使等式两边分母一样,然后是使分子相等,可以求出结果。
【详解】
3x-2=3x+3+m
m=-5
故答案为:-5
此题考查分式的化简求值,掌握运算法则是解题关键
13、2﹣或.
【解析】
由勾股定理和含30°角的直角三角形的性质先分别求出AC和BC,然后根据题意把PF和FQ表示出来,当△PQF为等腰三角形时分三种情况讨论即可.
【详解】
解:∵∠ABC=90°,∠ACB=30°,AB=2cm,
∴AC=2AB=4cm,BC==2,
∵E、F分别是AB、AC的中点,
∴EF=BC=cm,BF=AC=2cm,
由题意得:EP=t,BQ=2t,
∴PF=﹣t,FQ=2﹣2t,
分三种情况:
①当PF=FQ时,如图1,△PQF为等腰三角形.
则﹣t=2﹣2t,
t=2﹣ ;
②如图2,当PQ=FQ时,△PQF为等腰三角形,过Q作QD⊥EF于D,
∴PF=2DF,
∵BF=CF,
∴∠FBC=∠C=30°,
∵E、F分别是AB、AC的中点,
∴EF∥BC,
∴∠PFQ=∠FBC=30°,
∵FQ=2﹣2t,
∴DQ=FQ=1﹣t,
∴DF= (1﹣t),
∴PF=2DF=2(1﹣t),
∵EF=EP+PF= ,
∴t+2(1﹣t)= ,
t= ;
③因为当PF=PQ时,∠PFQ=∠PQF=30°,
∴∠FPQ=120°,
而在P、Q运动过程中,∠FPQ最大为90°,所以此种情况不成立;
综上,当t=2﹣或时,△PQF为等腰三角形.
故答案为:2﹣ 或 .
勾股定理和含30°角的直角三角形的性质及等腰三角形的判定和性质都是本题的考点,本题需要注意的是分类讨论不要漏解.
三、解答题(本大题共5个小题,共48分)
14、12千米
【解析】
设小型清雪车每小时清扫路面的长度为x千米,则大型清雪车每小时清扫路面的长度为(x+6)千米,根据大型清雪车清扫路面90千米与小型清雪车清扫路面60千米所用的时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设小型清雪车每小时清扫路面的长度为x千米,则大型清雪车每小时清扫路面的长度为(x+6)千米,根据题意得:
解得:x=12,经检验,x=12是原方程的解,且符合题意.
答:小型清雪车每小时清扫路面的长度为12千米.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
15、(1)详见解析;(2)面积为4;(3)(-6,0).(10,0);
【解析】
(1)确定出点、、的位置,连接、、即可;
(2)过点向、轴作垂线,垂足为、,的面积=四边形的面积−的面积−的面积−的面积;
(3)点在轴上时,由的面积,求得:,故此点的坐标为或.
【详解】
(1)如图所示:
(2)过点向、轴作垂线,垂足为、,
四边形的面积,的面积,的面积,的面积,
的面积=四边形的面积−的面积−的面积−的面积.
(3)点在轴上,
,即:,解得:,
所以点的坐标为或.
本题主要考查的是点的坐标与图形的性质,明确的面积=四边形的面积−的面积−的面积−的面积是解题的关键.
16、小明会被聘选为班长.
【解析】
分别求出两人的加权平均数,再进行比较,即可完成解答。
【详解】
解:小明的成绩=91×0.3+96×0.3+98×0.1=96.2(分);
小英的成绩=98×0.3+96×0.3+91×0.1=95.8(分);
∵96.2>95.8,
∴小明会被聘选为班长.
本题考查了加权平均数的实际应用,解题的关键在于能够联系实际生活,正确应用所学知识。
17、四边形的周长为8.
【解析】
根据、分别为的边、的中点,且证明四边形是平行四边形,再证明平行四边形是菱形即可求解.
【详解】
解:∵、分别为的边、的中点,
∴.
又∵,
∴四边形是平行四边形.
又∵,
∴平行四边形是菱形.
,
∴,
∴四边形的周长为8.
本题考查了平行四边形及菱形的判定和性质,证明四边形是菱形是解本题的关键.
18、(1)①证明见解析;②;(2);(3).
【解析】
(1)①由,推出,,推出四边形是平行四边形,再证明即可.
②先证明,推出,延长即可解决问题.
(2).只要证明是等边三角形即可.
(3)结论:.如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
四边形是矩形,
,,
,
在和中,
,
,
,,
四边形是平行四边形,
,,
,
四边形是菱形.
②平分,
,
,
,
,
,
,,
,
.
(2)结论:.
理由:如图2中,延长到,使得,连接.
四边形是菱形,,
,,
,
在和中,
,
,
,,
,
,
,
是等边三角形,
,
在和中,
,
,
,,,
,
,
,
,
是等边三角形,
在中,,,
,
.
(3)结论:.
理由:如图3中,将绕点逆时针旋转得到,
,
四点共圆,
,,
,
,
,
在和中,
,
,
,
,,
,
,,
.
本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或
【解析】
分两种情况:点F线段BC上时或在CB的延长线上时,根据正方形的性质及旋转的性质证明△ABF≌△ADE得到BF=DE,即可求出答案.
【详解】
∵四边形ABCD是正方形,
∴∠A=∠B=90°,AB=AD=BC=CD=DE+CE=2+1=3,
由旋转得AF=AE,
∴△ABF≌△ADE,
∴BF=DE=2,
如图:当点F线段BC上时,CF=BC-BF=3-2=1,
当点F在CB延长线上时,CF=BC+BF=3+2=5,
故答案为:1或5.
此题考查正方形的性质,全等三角形的判定及性质,旋转的性质,正确理解题意分情况解题是关键.
20、9或1
【解析】
【分析】△ABC中,∠ACB分锐角和钝角两种:
①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;
②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.
【详解】有两种情况:
①如图1,∵AD是△ABC的高,
∴∠ADB=∠ADC=90°,
由勾股定理得:BD==5,
CD==4,
∴BC=BD+CD=5+4=9;
②如图2,同理得:CD=4,BD=5,
∴BC=BD﹣CD=5﹣4=1,
综上所述,BC的长为9或1;
故答案为:9或1.
【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.
21、x=3
【解析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.
【详解】
解:整理得:=x+1,
方程两边平方,得:2x+10=x2+2x+1,
移项合并同类项,得:x2=9,
解得:x1=3,x2=-3,
经检验,x2=-3不是原方程的解,
则原方程的根为:x=3.
故答案为:x=3.
本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.
22、
【解析】
先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.
【详解】
∵英文单词believe共有7个字母,其中有3个e,
∴字母“e”出现的频率是;
故答案为:.
此题考查频数与频率,解题关键在于掌握频率的计算公式即可.
23、1
【解析】
延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.
【详解】
解:延长AD到点E,使DE=AD=6,连接CE,
∵AD是BC边上的中线,
∴BD=CD,
在△ABD和△CED中,
,
∴△ABD≌△CED(SAS),
∴CE=AB=5,∠BAD=∠E,
∵AE=2AD=12,CE=5,AC=13,
∴CE2+AE2=AC2,
∴∠E=90°,
∴∠BAD=90°,
即△ABD为直角三角形,
∴△ABD的面积=AD•AB=1.
故答案为1.
本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.
二、解答题(本大题共3个小题,共30分)
24、10米
【解析】
设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,根据此矩形苗圃园面积为100平方米列一元二次方程求解可得答案.
【详解】
解:设这个苗圃园垂直于墙的一边长为x米,则平行于墙的一边为(29+1-2x)米,
由题意得: x(30-2x)=100,
-2x+30x-100=0,x-15x+50=0
(x-5)(x-10)=0,
或,
当x=5时,则平行于墙的一边为20米>18米,不符合题意,
取x=10,
答:垂直于墙的一边长为10米.
本题主要考查一元二次方程的应用,根据已知条件列出方程式解题的关键.
25、 (1)456 (2)见解析 (3)42
【解析】
(1)设这个“美数”的个位数为x,则根据题意可得方程,解方程求出x的值即可得出答案.
(2)设四位“美数”的个位为x、两位“美数””的个位为y,分别表示出四位“美数”和两位“美数”,再将四位“美数”减去任意一个两位“美数””之差再加上1的结果除以11判断结果是否为整数即可;
(3)根据题意两个数之和为55得出二元一次方程,化简方程,再根据x与y的取值范围,即可求出最大值.
【详解】
(1)设其个位数为x,则
解得:x=6
则这个“美数”为:
(2)设四位“美数”的个位为x、两位“美数””的个位为y,
根据题意得:
=
=
即:式子结果是11的倍数
(3)根据题意:
,
由10x+y可得x越大越大,即y为最小值时的值最大
则x=4,y=2时的值最大
的最大值为
本题主要考查二元一次方程的应用,解题关键是设个位数的数为x得出方程并解答.
26、(1)x﹣60、300﹣x、260﹣x;(2)w=10x+10200(60≤x≤260);(3)m的取值范围是0<m≤1.
【解析】
分析:(1)根据题意可以将表格中的空缺数据补充完整;
(2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;
(3)根据题意,利用分类讨论的数学思想可以解答本题.
详解:(1)∵D市运往B市x吨,
∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,
故答案为:x﹣60、300﹣x、260﹣x;
(2)由题意可得,
w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,
∴w=10x+10200(60≤x≤260);
(3)由题意可得,
w=10x+10200﹣mx=(10﹣m)x+10200,
当0<m<10时,
x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,
解得,0<m≤1,
当m>10时,
x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,
解得,m≤,
∵<10,
∴m>10这种情况不符合题意,
由上可得,m的取值范围是0<m≤1.
点睛:本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
题号
一
二
三
四
五
总分
得分
小明
小英
思想表现
91
98
学习成绩
96
96
工作能力
98
91
A(吨)
B(吨)
合计(吨)
C
240
D
x
260
总计(吨)
200
300
500
辽宁省盘锦市双台子区一中学2025届数学九上开学经典试题【含答案】: 这是一份辽宁省盘锦市双台子区一中学2025届数学九上开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京陈经纶中学2024-2025学年数学九上开学经典模拟试题【含答案】: 这是一份北京陈经纶中学2024-2025学年数学九上开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届辽宁省盘锦市大洼区九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2025届辽宁省盘锦市大洼区九年级数学第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。