辽宁省大连西岗区七校联考2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,经过点的直线与直线相交于点,则不等式的解集为( )
A.B.C.D.
2、(4分)下列说法中正确的是( )
A.有一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形
C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形
3、(4分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
A.B.C.D.
4、(4分)等腰三角形的底边和腰长分别是10和12,则底边上的高是( )
A.13B.8C.D.
5、(4分)一组数据3,5,4,7,10的中位数是( )
A.4B.5C.6D.7
6、(4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,乙从B地到A地需要( )分钟
A.12B.14C.18D.20
7、(4分)已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的( )
A.B.C.D.
8、(4分)如图,在中,,,.点,,分别是相应边上的中点,则四边形的周长等于( )
A.8B.9C.12D.13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数中自变量x的取值范围是_______.
10、(4分)如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.
11、(4分)有一组数据:其众数为,则的值为_____.
12、(4分)数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则x=________.
13、(4分)定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形,点为对角线上一个动点,为边上一点,且.
(1)求证:;
(2)若四边形的面积为25,试探求与满足的数量关系式;
(3)若为射线上的点,设,四边形的周长为,且,求与的函数关系式.
15、(8分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,B、D分别在轴负半轴、轴正半轴上,点E是轴的一个动点,连接CE,以CE为边,在直线CE的右侧作正方形CEFG.
(1)如图1,当点E与点O重合时,请直接写出点F的坐标为_______,点G的坐标为_______.
(2)如图2,若点E在线段OD上,且OE=1,求正方形CEFG的面积.
(3)当点E在轴上移动时,点F是否在某条直线上运动?如果是,请求出相应直线的表达式;如果不是,请说明理由.
16、(8分)某电冰箱厂每个月的产量都比上个月増长的百分数相同.己知该厂今年月份的电冰箱产量为万台,月份比月份多生产了万台.
(1)求该厂今年产量的月平均増长率为多少?
(2)预计月份的产量为多少万台?
17、(10分)如图1,是的边上的中线.
(1)①用尺规完成作图:延长到点,使,连接;
② 若,求的取值范围;
(2)如图2,当时,求证:.
18、(10分)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其他任何区别.现将3个小球放入编号为①②③的三个盘子里,规定每个盒子里放一个,且只能放一个小球
(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能情况;
(2)求红球恰好被放入②号盒子的概率.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)
20、(4分)当________时,方程无解.
21、(4分)一次函数y=-x-1的图象不经过第_____象限.
22、(4分)在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、…,、、…在直线上,点、、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、..,则的值为________.
23、(4分)一次函数的图像经过点,且的值随值的増大而增大,请你写出一个符合所有条件的点的坐标__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形中,且,四边形的对角线,相交于,点,分别是,的中点,求证:.
25、(10分)如图,方格纸中的每个小方格都是边长为1个单位长度的小正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A,B,C三点的坐标分别为(5,﹣1),(2,﹣5),(2,﹣1).
(1)把△ABC向上平移6个单位后得到△A1B1C1,画出△A1B1C1;
(2)画出△A2B2C2,使它与△ABC关于y轴对称;
(3)画出△A3B3C3,使它与△ABC关于原点中心对称.
26、(12分)某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先利用直线y=-2x+2的解析式确定A点坐标,然后结合函数特征写出直线y=kx+b在直线y=-2x+2上方所对应的自变量的范围即可.
【详解】
解:把代入y=﹣2x+2得﹣2m+2=,解得m=﹣,
当x>﹣时,﹣2x+2<kx+b.
故选C.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
2、C
【解析】
运用正方形的判定,菱形的判定,平行四边形的性质和判定可求解.
【详解】
解:A、有一组对边平行的四边形不一定是平行四边形(如梯形),故该选项错误;
B、对角线互相垂直的四边形不一定是菱形(如梯形的对角线也可能垂直),故该选项错误;
C、有一组邻边相等的平行四边形是菱形,故该选项正确;
D、对角线互相垂直平分的四边形不一定是正方形(如菱形),故该选项错误;
故选:C.
本题考查了正方形的判定,菱形的判定,平行四边形的性质和判定,灵活运用这些判定定理是解决本题的关键.
3、D
【解析】
根据中心对称图形的概念求解.
【详解】
解:A.不是中心对称图形,本选项错误;
B.不是中心对称图形,本选项错误;
C.不是中心对称图形,本选项错误;
D.是中心对称图形,本选项正确.
故选D.
本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4、D
【解析】
先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.
【详解】
解:作底边上的高并设此高的长度为x,
由等腰三角形三线合一的性质可得高线平分底边,
根据勾股定理得:52+x2=122,
解得x=
本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.
5、B
【解析】
根据中位数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:3,4,1,7,10,
则中位数为:1.
故选:B.
本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、A
【解析】
根据题意,得到路程和甲的速度,然后根据相遇问题,设乙的速度为x,列出方程求解,然后即可求出乙需要的时间.
【详解】
解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,
∴甲的速度是:1÷6=千米/分钟,
由纵坐标看出AB两地的距离是16千米,
设乙的速度是x千米/分钟,由题意,得:
10x+16×=16,
解得:x=,
∴乙从B地到A地需要的时间为:(分钟);
故选:A.
本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.
7、D
【解析】
根据正比例函数的图象经过第一,三象限可得:, 因此在一次函数中,,根据直线倾斜方向向右上方,直线与y轴的交点在y轴负半轴,画出图象即可求解.
【详解】
根据正比例函数的图象经过第一,三象限可得:
所以,
所以一次函数中,,
所以一次函数图象经过一,三,四象限,
故选D.
本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.
8、B
【解析】
根据三角形中位线的性质及线段的中点性质求解即可.
【详解】
解:点,,分别是相应边上的中点
是三角形ABC的中位线
同理可得,
四边形的周长
故答案为:B
本题考查了三角形的中位线,熟练运用三角形中位线的性质求线段长是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥-3
【解析】
根据被开方数必须大于或等于0可得:3+x≥0,解不等式即可.
【详解】
因为要使有意义,
所以3+x≥0,
所以x≥-3.
故答案是:x≥-3.
本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.
10、
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=3x+b.
把(0,1)代入直线解析式得1=b,
解得 b=1.
所以平移后直线的解析式为y=3x+1.
故答案为:y=3x+1.
本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
11、1.
【解析】
根据众数的定义进行求解即可,即众数是指一组数据中出现次数最多的数据.
【详解】
解:∵数据:2,1,1,x,5,5,6其众数为1,
∴x=1,
故答案为:1.
本题考查了众数的知识.解题的关键是熟练掌握众数的定义.
12、1
【解析】
∵x>5∴x相当于已知调和数1,代入得,解得,x=1.
13、
【解析】
可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解
【详解】
解:
①当为顶角时,等腰三角形两底角的度数为:
∴特征值
②当为底角时,顶角的度数为:
∴特征值
综上所述,特征值为或
故答案为或
本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知的底数,要进行判断是底角或顶角,以免造成答案的遗漏.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2) ;(3) .
【解析】
(1)如图1中,作PE⊥BC于E,PF⊥CD于F.只要证明△PEB≌△PFQ即可解决问题;
(2)根据S四边形BCQP=S四边形CEPF即可解决问题;
(3)如图2,过P做EF∥AD分别交AB和CD于E、F,易知,由,推出,由,推出,由此即可解决问题.
【详解】
(1)如图1中,作于,于,
四边形是正方形,
,于,于,
,
,
四边形是矩形,,
四边形是正方形,
,
,
,
,
;
(2)如图1中,由(1)可知,四边形是正方形,
,,,
,
,
,
;
(3)如图2,过做分别交和于、,
,
,
,
,
,
,
.
本题考查的是四边形综合题,涉及了全等三角形的判定和性质、正方形的性质和判定等知识,正确添加辅助线,灵活运用所学知识是解题的关键.
15、(1)(2) (3)是, 理由见解析.
【解析】
(1)利用四边形OBCD是边长为4的正方形,正方形CEFG,的性质可得答案,
(2)利用勾股定理求解的长,可得面积,
(3)分两种情况讨论,利用正方形与三角形的全等的性质,得到的坐标,根据坐标得到答案.
【详解】
解:(1) 四边形OBCD是边长为4的正方形,
正方形CEFG,
三点共线,
故答案为:
(2)由
正方形CEFG的面积
(3)如图,当在的左边时,作于,
正方形CEFG ,
四边形OBCD是边长为4的正方形,
在与中,
设
①+②得:
在直线上,
当在的右边时,同理可得:在直线上.
综上:当点E在轴上移动时,点F是在直线上运动.
本题考查的是正方形的性质,三角形的全等的判定与性质,勾股定理的应用,点的移动轨迹问题,即点在一次函数的图像上移动,掌握以上知识是解题的关键.
16、(1)20%;(2)8.64万台.
【解析】
试题分析:
(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2
,解方程即可得到所求答案;
(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.
试题解析:
(1)设该厂今年产量的月平均增长率是x,根据题意得:
5(1+x)2﹣5(1+x)=1.2
解得:x=﹣1.2(舍去),x=0.2=20%.
答:该厂今年的产量的月增长率为20%;
(2)7月份的产量为:5(1+20%)3=8.64(万台).
答:预计7月份的产量为8.64万台.
17、(1)①详见解析;②1<<5;(2)详见解析
【解析】
(1)①首先利用尺规作图,使得DE=AD,在连接CE,②首先利用≌可得AB=CE,在中,确定AE的范围,再根据AE=2AD,来确定AD的范围.
(2)首先延长延长到点,使,连接和BE,结合,可证四边形是平行四边形,再根据,可得四边形是矩形,因此可证明.
【详解】
(1)①用尺规完成作图:延长到点,使,连接;
②∵,,
∴≌
∴
∴6-4<<6+4,即2<<10
又∵
∴1<<5
(2)延长到点,使,连接
∵
∴四边形是平行四边形
∵
∴四边形是矩形
∴
∴.
本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等.
18、(1)详见解析;(2)
【解析】
列举出符合题意的各种情况的个数,再根据概率公式解答即可.
【详解】
(1)
(2)P(红球恰好被放入②号盒子)=
本题考查列表法与树状图法,列举出符合题意的各种情况的个数是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、正方
【解析】
此类题根据矩形性质,三角形内角和定理及角平分线定义得到所求的四边形的各个角为90°,进而求解.
【详解】
∵AF,BE是矩形的内角平分线.
∴∠ABF=∠BAF-90°.
故∠1=∠2=90°.
同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.
又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,
∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.
∴OD=OC,△AMD≌△BNC,
∴NC=DM,
∴NC-OC=DM-OD,
即OM=ON,
∴矩形GMON为正方形,
故答案为正方.
本题考查的是矩形性质,角平分线定义,联系三角形内角和的知识可求解.
20、1
【解析】
根据分式方程无解,得到1−x= 0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.
【详解】
解:分式方程去分母得:m=2(1−x)+1,
由分式方程无解,得到1−x=0,即x=1,
代入整式方程得:m=1.
故答案为:1.
此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.
21、一.
【解析】
先根据一次函数y= -x-1中k= -,b=-1判断出函数图象经过的象限,进而可得出结论.
【详解】
解:∵一次函数y=-x-1中k=-<0,b=-1<0,
∴此函数的图象经过二、三、四象限,不经过第一象限.
故答案为:一.
本题考查一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.
22、
【解析】
根据=,=,找出规律从而得解.
【详解】
解:
∵直线,当x=0时,y=1,当y=0时,x=﹣1,
∴OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴=,
∵A2B1=A1B1=1,
∴A2C1=2=,
∴=,
同理得:A3C2=4=,…,=,
∴=,
故答案为.
23、(1,2)(答案不唯一).
【解析】
由于y的值随x值的增大而增大,根据一次函数的增减性得出k>0,可令k=1,那么y=x+1,然后写出点P的坐标即可.
【详解】
解:由题意可知,k>0即可,
可令k=1,那么一次函数y=kx+1即为y=x+1,
当x=1时,y=2,
所以点P的坐标可以是(1,2).
故答案为(1,2)(答案不唯一).
本题考查了一次函数图象上点的坐标特征,一次函数的性质,得出k>0是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.
【详解】
解:证明:连接BF、DE,如图所示:
∵,,
∴四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵E、F分别是OA、OC的中点,
∴OE=OA,OF=OC,
∴OE=OF,
∴四边形BFDE是平行四边形,
∴BE=DF.
本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
25、 (1)见解析;(2)见解析;(3)见解析.
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用轴对称的性质得出对应点位置进而得出答案;
(3)直接利用旋转的性质得出对应点位置进而得出答案.
【详解】
(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求;
(3)如图所示:△A3B3C3,即为所求.
此题主要考查了平移变换以及轴对称变换和旋转变换,正确得出对应点位置是解题关键.
26、1元
【解析】
首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.
【详解】
解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:,解方程,得x=1.
经检验:x=1是原方程的根,且符合题意.
答:跳绳的单价是1元.
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
题号
一
二
三
四
五
总分
得分
2025届广西玉林玉州区七校联考九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份2025届广西玉林玉州区七校联考九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年哈尔滨松北区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年哈尔滨松北区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。