江西省吉安市2024-2025学年数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,四边形ABCD的对角线AC⊥BD,E,F,G,H分别是边AB,BC,CD,DA的中点,那么四边形EFGH是( )
A.平行四边形B.矩形C.菱形D.正方形
2、(4分)如果分式有意义,那么的取值范围是( )
A.B.C.D.
3、(4分)下列各式中,一定是二次根式的是
A.B.C.D.
4、(4分)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于( )
A.8cmB.6cmC.4cmD.2cm
5、(4分)对一组数据:2,1,3,2,3分析错误的是( )
A.平均数是2.2B.方差是4C.众数是3和2D.中位数是2
6、(4分)如图,在平行四边形ABCD中,AB=4,AD=6,∠D=120°,延长CB至点M,使得BM=BC,连接AM,则AM的长为( )
A.3.5B.C.D.
7、(4分)某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小B.平均数变小,方差变大
C.平均数变大,方差变小D.平均数变大,方差变大
8、(4分)坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过( )
A.第一、二象限B.第一、四象限
C.第二、三象限D.第二、四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为____.
10、(4分)如图, 是某地区 5 月份某周的气温折线图,则这个地区这个周的气温的极差是_____℃.
11、(4分)如图,两张等宽的纸条交叉叠放在一起,若重叠都分构成的四边形ABCD中,AB=3,BD=1.则AC的长为_________________.
12、(4分)函数中,自变量________的取值范围是________.
13、(4分)函数中自变量的取值范围是_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
求证:AP=EF.
15、(8分)如图,四边形是平行四边形,为上一点,连接并延长,使,连接并延长,使,连接,为的中点,连接.
(1)求证:四边形是平行四边形;
(2)若,,,求的度数.
16、(8分)如图,直线是一次函数的图象.
(1)求出这个一次函数的解析式;
(2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图像与轴的交点坐标
17、(10分)(阅读材料)
解方程:.
解:设,则原方程变为.
解得,,.
当时,,解得.
当时,,解得.
所以,原方程的解为,,,.
(问题解决)
利用上述方法,解方程:.
18、(10分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
求证:;
求证:四边形BDFG为菱形;
若,,求四边形BDFG的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:=________.
20、(4分)当m=________时,函数y=-(m-2)+(m-4)是关于x的一次函数.
21、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
22、(4分)如图,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则BC=_____.
23、(4分)如图,∠C=90°,∠ABC=75°,∠CBD=30°,若BC=3 cm,则AD=________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八(1)班次数学测验(卷面满分分)成绩统计,有的优生,他们的人均分为分,的不及格,他们的人均分为分,其它同学的人均分为分,求全班这次测试成绩的平均分.
25、(10分)如图,已知直线的解析式为,直线的解析式为,与轴交于点,与轴交于点,与交于点.
①的值.
②求三角形的面积.
26、(12分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据中位线定义得出EF=HG,EF∥HG,证明四边形EFGH为平行四边形,再根据矩形的判定法则即可判定
【详解】
∵E,F分别是边AB,BC的中点,
∴EF= AC,EF∥AC,
同理,HG= AC,HG∥AC,
∴EF=HG,EF∥HG,
∴四边形EFGH为平行四边形,
∵F,G分别是边BC,CD的中点,
∴FG∥BD,
∴∠FGH=90°,
∴平行四边形EFGH为矩形,
故选:B.
此题考查三角形中位线的性质,矩形的判定,解题关键在于利用中位线的性质进行解答
2、D
【解析】
根据分式有意义,分母不等于0列不等式求解即可.
【详解】
解:由题意得,x+1≠0,
解得x≠-1.
故选:D.
本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
3、C
【解析】
根据二次根式的定义进行判断.
【详解】
解:A.无意义,不是二次根式;
B.当时,是二次根式,此选项不符合题意;
C.是二次根式,符合题意;
D.不是二次根式,不符合题意;
故选C.
本题考查了二次根式的定义,关键是掌握把形如的式子叫做二次根式.
4、C
【解析】
试题分析:解:∵四边形ABCD是平行四边形,
∴BC=AD=12cm,AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BEA=∠BAE,
∴BE=AB=8cm,
∴CE=BC﹣BE=4cm;
故答案为C.
考点:平行四边形的性质.
5、B
【解析】
根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.
【详解】
解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;
B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;
C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;
D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.
故选:B.
此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题
6、B
【解析】
作AN⊥BM于N,求出∠BAN=30°,由含30°角的直角三角形的性质得出BN、AN的长,由勾股定理即可得出答案.
【详解】
作AN⊥BM于N,如图所示:
则∠ANB=∠ANM=90°,
∵四边形ABCD是平行四边形,
∴BC=AD=6,∠ABC=∠D=120°,
∴∠ABN=60°,
∴∠BAN=30°,
∴BN=AB=2,AN=,
∵BM=BC=3,
∴MN=BM-BN=1,
∴AM=,
故选:B.
本题考查了平行四边形的性质、含30°角的直角三角形的性质以及勾股定理等知识;熟练掌握平行四边形的性质和含30°角的直角三角形的性质是解题的关键.
7、A
【解析】
分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
详解:换人前6名队员身高的平均数为==188,
方差为S2==;
换人后6名队员身高的平均数为==187,
方差为S2==
∵188>187,>,
∴平均数变小,方差变小,
故选:A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
8、A
【解析】
根据该线性函数过点(-3,4)和(-7,4)知,该直线是y=4,据此可以判定该函数所经过的象限.
【详解】
∵坐标平面上有一次函数过(-3,4)和(-7,4)两点,
∴该函数图象是直线y=4,
∴该函数图象经过第一、二象限.
故选:A.
本题考查了一次函数的性质.解题时需要了解线性函数的定义:在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量.一次函数在平面直角坐标系上的图象为一条直线.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由点A的坐标利用待定系数法即可求出正比例函数的解析式,再利用一次函数图象上点的坐标特征可求出m的值,此题得解.
【详解】
设正比例函数的解析式为y=kx(k≠0),
∵该正比例函数图象经过点A(3,﹣6),
∴﹣6=3k,解得:k=﹣1,
∴正比例函数的解析式为y=﹣1x.
∵点B(m,﹣4)在正比例函数y=﹣1x的图象上,
∴﹣4=﹣1m,
解得:m=1.
故答案为:1.
本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
10、10℃
【解析】
根据极差的定义进行计算即可
【详解】
解:∵根据折线图可得:本周的最高气温为30℃,最低气温为20℃,
∴极差是:30-20=10(℃)
故答案为:10℃
本题考查了极差的定义和折线图,熟练掌握极差是最大值和最小值的差是解题的关键
11、2
【解析】
过点D作DE⊥AB于点E,DF⊥BC于点F,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得OB的长,从而可得到BD的长.
【详解】
如图,过点D作DE⊥AB于点E,DF⊥BC于点F,连接AC,DB交于点O,
则DE=DF,
由题意得:AB∥CD,BC∥AD,
∴四边形ABCD是平行四边形
∵S▱ABCD=BC•DF=AB•DE.
又∵DE=DF.
∴BC=AB,
∴四边形ABCD是菱形;
∴OB=OD=2,OA=OC,AC⊥BD.
∴
∴AC=2AO=2
故答案为:2
本题考查了菱形的判定、解直角三角形以及四边形的面积,证得四边形为菱形是解题的关键.
12、且
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于O,可以求出x的范围.
【详解】
解:根据题意得:
计算得出: x≥-2且x≠1.
故答案是: x≥-2且x≠1.
本题考查了二次根式被开方数大于等于0及分式中分母不能为0等知识.
13、且
【解析】
根据分式和二次根式有意义的条件列不等式组求解即可.
【详解】
根据分式和二次根式有意义的条件可得
解得且
故答案为:且.
本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见试题解析
【解析】
试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.
证明:如图,连接PC,
∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,
∴∠PEC=∠PFC=∠ECF=90°,
∴四边形PECF为矩形,
∴PC=EF,
又∵P为BD上任意一点,
∴PA、PC关于BD对称,
可以得出,PA=PC,所以EF=AP.
15、(1)见解析;(2).
【解析】
(1)证明,与,即可;
(2)要求的∠CBE是等腰三角形的底角,只需求出顶角∠ECB的度数即可.
【详解】
解:(1)证明:∵四边形是平行四边形,
∴,,,
∵,,
∴是的中位线,
∴,;
∵为的中点,∴,
∴,,
∴,
∴四边形是平行四边形;
(2)解:∵,∴,
∵,∴,
∵,∴.
本题考查了平行四边形的性质与判定、三角形的中位线定理和等腰三角形的性质,合理选用平行四边形的判定方法是证明(1)题的关键;解(2)题的关键是把所求的角与已知角集中在同一个三角形中.
16、(1);(2),
【解析】
(1)利用待定系数法求一次函数解析式即可;
(2)根据一次函数的平移规律:左加右减,上加下减,即可求出平移后的解析式,然后将y=0代入求出x的值,即可求出结论.
【详解】
解:(1)把点,代入中,得:
解得
∴一次函数的解析式为
(2)将该函数的图象向下平移3个单位后得.
当时,解得:
∴平移后函数图象与轴的交点坐标为
此题考查的是求一次函数的解析式和一次函数图象的平移,掌握用待定系数法求一次函数的解析和一次函数的平移规律:左加右减,上加下减是解决此题的关键.
17、,,,
【解析】
先变形,再仿照阅读材料换元,求出m的值,再代入求出x即可.
【详解】
解:原方程变为.
设,则原方程变为.
解得,,.
当时,,解得
当时,,解得或3.
所以,原方程的解为,,,.
本题考查解一元二次方程和解高次方程,能够正确换元是解此题的关键.
18、(1)证明见解析(2)证明见解析(3)1
【解析】
利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
【详解】
证明:,,
,
又为AC的中点,
,
又,
,
证明:,,
四边形BDFG为平行四边形,
又,
四边形BDFG为菱形,
解:设,则,,
在中,,
解得:,舍去,
,
菱形BDFG的周长为1.
本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 ﹣1
【解析】
利用二次根式的性质将二次根式化简得出即可.
【详解】
解:=|1-|= ﹣1.
故答案为: ﹣1.
本题考查二次根式的化简求值,正确化简二次根式是解题关键.
20、-2
【解析】
∵函数y=-(m-2)+(m-4)是一次函数,
∴,
∴m=-2.
故答案为-2
21、
【解析】
由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
【详解】
∵1160°÷180°=6…80°,
又∵100°+80°=180°,
∴这个内角度数为100°,
故答案为:100°.
本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
22、2
【解析】
根据题意推出AB=AB1=2,由AE=CE推出AB1=B1C,即AC=4,然后依据勾股定理可求得BC的长.
【详解】
解:∵AB=2cm,AB=AB1
∴AB1=2cm,
∵四边形ABCD是矩形,AE=CE,
∴∠ABE=∠AB1E=90°
∵AE=CE,
∴AB1=B1C,
∴AC=4cm.
在Rt△ABC中,BC= .
故答案为:2cm.
本题主要考查翻折的性质、矩形的性质、等腰三角形的性质,解题的关键在于推出AB=AB1.
23、6+
【解析】
由已知条件可知:BD=2CD,根据三角函数可求出CD,作AB的垂直平分线,交AC于点E,在Rt△BCE中,根据三角函数可求出BE、CE,进而可将AD的长求出.
【详解】
解:作AB的垂直平分线,交AC于点E,
∴AE=BE,∵∠C=90°,∠ABC=75°,∠CBD=30°,∴2∠A=∠BED=30°,
∴tan30°==,
解得:CD=cm,
∵BC=3cm,∴BE=6cm,∴CE=3cm,
∴AD=AE+CE﹣CD=BE+CE﹣CD=(6+)cm.
二、解答题(本大题共3个小题,共30分)
24、平均分1
【解析】
根据加权平均数的计算方法可计算出这次测验全班成绩的平均数.
【详解】
解:.
故答案为:平均分1.
本题考查加权平均数的计算方法,正确的计算加权平均数是解题的关键.
25、①k=2,b=1;②1
【解析】
①利用待定系数法求出k,b的值;
②先根据两个函数解析式计算出B、C两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.
【详解】
解:①∵l1与l2交于点A(-1,2),
∴2=-k+4,2=1+b,
解得k=2,b=1;
②当y=0时,2x+4=0,
解得x=-2,
∴B(-2,0),
当y=0时,-x+1=0
解得x=1,
∴C(1,0),
∴△ABC的面积=×(2+1)×2=1.
此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.
26、证明见解析.
【解析】
连接BD交AC于O,根据平行四边形性质得出,,根据平行线性质得出,根据AAS证≌,推出,根据平行四边形的判定推出即可.
【详解】
连接BD交AC于O,
四边形ABCD是平行四边形,
,,
,
,
在和中,
,
≌,
,
,
四边形BFDE是平行四边形.
本题考查了平行四边形的性质和判定,平行线的性质,对顶角相等,全等三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份江西省吉安市吉水外国语学校2024-2025学年九上数学开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江西省吉安市七校联盟九上数学开学综合测试试题【含答案】: 这是一份2024-2025学年江西省吉安市七校联盟九上数学开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。