江西省丰城市第九中学2024-2025学年数学九上开学考试试题【含答案】
展开
这是一份江西省丰城市第九中学2024-2025学年数学九上开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()
A.6米B.3米C.6米D.3米
2、(4分)在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是( )
A.B.
C.D.与互相平分
3、(4分)如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于( )
A.110°B.35°C.70°D.55°
4、(4分)今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有( )
A.1种B.2种C.3种D.4种
5、(4分)如图,正方形ABCD的边长为3,E、F是对角线BD上的两个动点,且EF=,连接AE、AF,则 AE+AF 的最小值为( )
A.B.3C.D.
6、(4分)如图,正方形ABCD的对角线AC与BD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC,AB交于点M,N,连接DM,CN,MN,下列四个结论:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是( )
A.1B.2C.3D.4
7、(4分)下列二次拫式中,最简二次根式是( )
A.B.C.D.
8、(4分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A.12B.24C.12D.16
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4,则□ABCD的面积等于________.
10、(4分)某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数如表,则该周PM2.5指数的众数和中位数分别是________
11、(4分) “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
12、(4分)如图,直线 y=x+1 与 y 轴交于点 A1,以 OA1为边,在 y 轴右侧作正方形 OA1B1C1,延长 C1B1交直线 y=x+1 于点 A2,再以 C1A2为边作正方形,…,这些正方形与直线 y=x+1 的交点分别为 A1,A2,A3,…,An,则点 Bn 的坐标为_______.
13、(4分)一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.
三、解答题(本大题共5个小题,共48分)
14、(12分)平衡车越来越受到中学生的喜爱,某公司今年从厂家以3000元/辆的批发价购进某品牌平衡车300辆进行销售,零售价格为4200元/辆,暑期将至,公司决定拿出一部分该品牌平衡车以4000元/辆的价格进行促销.设全部售出获得的总利润为y元,今年暑假期间拿出促销的该品牌平衡车数量为x辆,根据上述信息,解答下列问题:
(1)求y与x之间的函数解析式(也称关系式),并直接写出x的取值范围;
(2)若以促销价进行销售的数量不低于零售价销售数量的 ,该公司应拿出多少辆该品牌平衡车促销才能使这批车的销售利润最大?并求出最大利润.
15、(8分)如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.
求证:四边形AECF是平行四边形.
16、(8分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,
(1)求v关于t的函数表达式,并写出自变量t的取值范围;
(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.
17、(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.
18、(10分)深圳市某中学为了更好地改善教学和生活环境,该学校计划在2020年暑假对两栋主教学楼重新进行装修.
(1)由于时间紧迫,需要雇佣建筑工程队完成这次装修任务.现在有甲,乙两个工程队,从这两个工程队资质材料可知:如果甲工程队单独施工,则刚好如期完成,如果乙工程队单独施工则要超过期限6天才能完成,若两队合做4天,剩下的由乙队单独施工,则刚好也能如期完工,那么,甲工程队单独完成此工程需要多少天?
(2)装修后,需要对教学楼进行清洁打扫,学校准备选购A、B两种清洁剂共100瓶,其中A种清洁剂6元/瓶,B种清洁剂9元/瓶.要使购买总费用不多于780元,则A种清洁剂最少应购买多少瓶?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
20、(4分)如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是____.
21、(4分)如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,以点B为旋转中心将BO逆时针旋转60°得到线段,连接,下列结论:①可以看成是△BOC绕点B逆时针旋转60°得到的;②点O与的距离为5;③∠AOB=150°;④S四边形AOBO′=6+4;⑤=6+.其中正确的结论有_____.(填正确序号)
22、(4分)在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.
23、(4分)在菱形ABCD中,两条对角线AC与BD的和是1.菱形的边AB=5,则菱形ABCD的面积是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,,垂足分别为.求证四边形是矩形.
25、(10分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.
(1)若该城市某户6月份用水18吨,该户6月份水费是多少?
(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
26、(12分)计算: (1)(+)(﹣)﹣(+3)2; (2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.
【详解】
解:∵菱形ABCD的周长是24米,∠BAC=30°,
∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,
∴△ABD是等边三角形,
∴BD=AB=6米.
故选C.
此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.
2、D
【解析】
由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.
【详解】
解:∵在四边形ABCD中,对角线AC,BD互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD,
∴四边形ABCD是菱形,
故选:D.
此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.
3、C
【解析】
根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.
【详解】
∵四边形ABCD是平行四边形,
∴∠BCD=∠A=110°,
∴∠1=180°﹣∠BCD=180°﹣110°=70°,
故选C.
本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.
4、C
【解析】
设租用甲种货车x辆,则租用乙种货车(8-x)辆,根据8辆货车可一次将枇杷20吨、桃子12吨运完,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出结论.
【详解】
解:设租用甲种货车x辆,则租用乙种货车(8-x)辆,
依题意,得:
解得:2≤x≤1.
∵x为整数,
∴x=2,3,1,
∴共有3种租车方案.
故选:C.
本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.
5、A
【解析】
如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
【详解】
解:如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
∵AH=EF,AH∥EF,
∴四边形EFHA是平行四边形,
∴EA=FH,
∵FA=FC,
∴AE+AF=FH+CF=CH,
∵四边形ABCD是正方形,
∴AC⊥BD,∵AH∥DB,
∴AC⊥AH,
∴∠CAH=90°,
在Rt△CAH中,CH= =2 ,
∴AE+AF的最小值2,
故选:A.
本题考查轴对称-最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
6、C
【解析】
利用正方形的性质进行等角转换,正方形ABCD的对角线AC与BD相交于点O,AC⊥BD,∠COM+∠MOB=∠BON+∠MOB=90°,∠COM=∠BON,OB=OC,∠OBN=∠OCM=45°,△ONB≌△OMC,得NB=MC,又BC=CD,∠DCM=∠CBN=90°,故△CNB≌△DMC
【详解】
解:∵正方形ABCD的对角线AC与BD相交于点O
∴AC⊥BD,∠COM+∠MOB=∠BON+∠MOB=90°
∴∠COM=∠BON,OB=OC,∠OBN=∠OCM=45°
∴△ONB≌△OMC
∴NB=MC
又∵BC=CD,∠DCM=∠CBN=90°
∴△CNB≌△DMC
∴③结论正确;
由△CNB≌△DMC,得出∠BCN=∠CDM
又∠CDM+∠CMD=90°
∴∠BCN+∠CMD=90°
∴CN⊥DM
故②结论正确.
利用正方形的性质进行等角转换,还有三角形全等的判定,熟练掌握,方能轻松解题.
7、A
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;
B、被开方数含能开得尽方的因数或因式,故B不符合题意;
C、被开方数含分母,故C不符合题意;
D、被开方数含能开得尽方的因数或因式,故D不符合题意;
故选:A.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
8、D
【解析】
如图,连接BE,
∵在矩形ABCD中,AD∥BC,∠EFB=60°,
∴∠AEF=110°-∠EFB=110°-60°=120°,∠DEF=∠EFB=60°.
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,
∴∠BEF=∠DEF=60°.
∴∠AEB=∠AEF-∠BEF=120°-60°=60°.
在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2.
∵AE=2,DE=6,∴AD=AE+DE=2+6=1.
∴矩形ABCD的面积=AB•AD=2×1=16.故选D.
考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、16
【解析】
根据等边三角形性质求出OA=OB=AB,根据平行四边形性质推出AC=BD,根据矩形的判定推出平行四边形ABCD是矩形;求出AC长,根据勾股定理求出BC,根据矩形的面积公式求出即可.
【详解】
∵△AOB是等边三角形,
∴OA=OB=AB=4,
∵四边形ABCD是平行四边形,
∴AC=2OA,BD=2OB,
∴AC=BD,
∴平行四边形ABCD是矩形.
∵OA=AB=4,AC=2OA=8,四边形ABCD是矩形,
∴∠ABC=90°,
∵在Rt△ABC中,由勾股定理得:BC=,
∴▱ABCD的面积是:AB×BC=4×4=16.
此题考查矩形的判定与性质,平行四边形的性质,勾股定理,等边三角形的性质,解题关键在于求出AC长.
10、150,1
【解析】
根据众数和中位数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:150,150,150,1,1,160,165,
则众数为:150,
中位数为:1.
故答案为:150,1
此题考查中位数,众数,解题关键在于掌握其概念
11、57.5
【解析】
根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.
【详解】
如图,AE与BC交于点F,
由BC //ED 得△ABF∽△ADE,
∴AB:AD=BF:DE,即5:AD=0.4:5,
解得:AD=62.5(尺),
则BD=AD-AB=62.5-5=57.5(尺)
故答案为57.5.
本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.
12、 (2n-1,2(n-1)).
【解析】
首先求出B1,B2,B3的坐标,根据坐标找出规律即可解题.
【详解】
解:由直线y=x+1,知A1(0,1),即OA1=A1B1=1,
∴B1的坐标为(1,1)或[21-1,2(1-1)];
那么A2的坐标为:(1,2),即A2C1=2,
∴B2的坐标为:(1+2,2),即(3,2)或[22-1,2(2-1)];
那么A3的坐标为:(3,4),即A3C2=4,
∴B3的坐标为:(1+2+4,4),即(7,4)或[23-1,2(3-1)];
依此类推,点Bn的坐标应该为(2n-1,2(n-1)).
本题属于规律探究题,中等难度.求出点B坐标,找出规律是解题关键.
13、1
【解析】
由0-4分钟的函数图象可知进水管的速度,根据4-12分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.
解:进水管的速度为:20÷4=5(升/分),
出水管的速度为:5-(30-20)÷(12-4)=3.75(升/分),
∴关停进水管后,出水经过的时间为:30÷3.75=1分钟.
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、(1)y=﹣200x+360000(0≤x≤300);(2)公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.
【解析】
(1)根据“利润=售价-成本”结合“总利润=促销部分的利润+正常零售的利润”列式进行计算即可得;
(2)根据以促销价进行销售的数量不低于零售价销售数量的列出关于x的不等式,然后求出x的取值范围,继而根据一次函数的性质进行求解即可.
【详解】
(1)根据题意得:
y=(4000﹣3000)x+(4200﹣3000)(300﹣x)=﹣200x+360000(0≤x≤300);
(2)根据题意得:x≥(300-x),
解得x≥60,
由(1)可知,y=﹣200x+360000,
∵﹣200<0,
∴y随x的增大而减小,
∴x=60时,y的值增大,最大值为:﹣200×60+360000=348000(元),
答:公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.
本题考查了一次函数的应用,弄清题意,找准各量间的数量关系是解题的关键.
15、详见解析
【解析】
平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD是平行四边形,可证OF=OE,OA=OC,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决.
【详解】
证明:∵四边形ABCD是平行四边形,
∴OD=OB,OA=OC,
∵AB∥CD,
∴∠DFO=∠BEO,∠FDO=∠EBO,
∴在△FDO和△EBO中,
∴△FDO≌△EBO(AAS),
∴OF=OE,
∴四边形AECF是平行四边形.
平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
16、(1)v关于t的函数表达式为v=,自变量的取值范围为t>0;(2)放水速度的范围为300≤x≤360立方米/小时.
【解析】
(1)由题意得vt=900,即v=,自变量的取值范围为t>0,
(2)把t=2.5,t=3代入求出相应的v的值,即可求出放水速度的范围.
【详解】
(1)由题意得:vt=900,
即:v=,
答:
(2)当t=2.5时,v==360,
当t=3时,v==300,
所以放水速度的范围为300≤v≤360立方米/小时,
答:所以放水速度的范围为300≤x≤360立方米/小时.
考查求反比例函数的关系式以及反比例函数图象上点的坐标特点,解题关键在于根据常用的数量关系得出函数关系式.
17、(1)y=-x+6;(2)12;(3)或.
【解析】
(1)利用待定系数法,即可求得函数的解析式;
(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;
(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.
【详解】
(1)设直线AB的函数解析式是y=kx+b,
根据题意得:,解得:,
∴直线AB的解析式是:y=-x+6;
(2)在y=-x+6中,令x=0,解得:y=6,
∴;
(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,
解得:,即直线OA的解析式是:,
∵△ONC的面积是△OAC面积的,
∴点N的横坐标是,
当点N在OA上时,x=1,y=,即N的坐标为(1,),
当点N在AC上时,x=1,y=5,即N的坐标为(1,5),
综上所述,或.
本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.
18、(1)甲工程队单独完成需要12天;(2)A种清洁剂最少应购买1瓶
【解析】
(1)可设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,根据工作总量的等量关系,列出方程即可求解;
(2)可设A种清洁剂应购买a瓶,则B种清洁剂应购买(100-a)瓶,根据购买总费用不多于780元,列出不等式即可求解.
【详解】
解:(1)设甲工程队单独完成此工程需要x天,则乙工程队单独完成此工程需要(x+6)天,
依题意有,解得x=12,
经检验,x=12是原方程的解.
故甲工程队单独完成此工程需要12天;
(2)设A种清洁剂应购买a瓶,则B种清洁剂应购买(100-a)瓶,
依题意有6a+9(100-a)≤780,
解得a≥1.
故A种清洁剂最少应购买1瓶.
考查了分式方程的应用,一元一次不等式的应用,分析题意,找到关键描述语,找到合适的等量关系和不等关系是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
∴C(3,1).
20、2.
【解析】
设AP=x,PB=4,由等腰直角三角形得到DP与PC,然后在直角三角形DPC中利用勾股定理列出CD与x的关系,列出函数解题即可
【详解】
设AP=x,PB=4,由等腰直角三角形性质可得到DP=,CP=,又易知三角形DPC为直角三角形,所以DC2=DP2+PC2==,利用二次函数性质得到DC2的最小值为8,所以DC的最小值为,故填
本题主要考察等腰直角三角形的性质与二次函数的性质,属于中等难度题,本题关键在于能用x表示出DC的长度
21、①③⑤
【解析】
如图,首先证明△OBO′为等边三角形,得到OO′=OB=4,故选项②错误;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④错误;将△AOB绕A点逆时针旋转60°至△AO″C,可得△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,再根据S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″进行计算即可判断选项⑤正确.
【详解】
解:如下图,连接OO′,
∵△ABC为等边三角形,
∴∠ABC=60°,AB=CB;
由题意得:∠OBO′=60°,OB=O′B,
∴△OBO′为等边三角形,∠ABO′=∠CBO,
∴OO′=OB=4;∠BOO′=60°,
∴选项②错误;
在△ABO′与△CBO中,,
∴△ABO′≌△CBO(SAS),
∴AO′=OC=5,
可以看成是△BOC绕点B逆时针旋转60°得到的,
∴选项①正确;
在△AOO′中,∵32+42=52,
∴△AOO′为直角三角形,
∴∠AOO′=90°,∠AOB=90°+60°=150°,
∴选项③正确;
∵S四边形AOBO′=×42×sin60°+×3×4=4+6,
∴选项④错误;
如下图,将△AOB绕A点逆时针旋转60°至△AO″C,连接OO″,
同理可得,△AOO″是边长为3的等边三角形,
△COO″是边长为3,4,5的直角三角形,
∴S△AOC+S△AOB
=S四边形AOCO″
=S△COO″+S△AOO″
=×3×4+×32×sin60°
=6+.
故⑤正确;
故答案为:①③⑤.
本题考查旋转的性质、三角形全等的判定和性质、等边三角形的判定和性质、勾股定理的逆定理,熟练掌握旋转的性质、等边三角形的判定和性质、勾股定理的逆定理的应用是解题的关键.
22、
【解析】
利用勾股定理可用m表示出OB的长,根据平方的非负数性质即可得答案.
【详解】
∵点B的坐标是(m,m-4),
∴OB==,
∵(m-2)2≥0,
∴2(m-2)2+8≥8,
∴的最小值为=,即OB的最小值为,
故答案为:
本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.
23、2
【解析】
根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.
【详解】
如图,
∵四边形ABCD是菱形,
∴OA=AC,OB=BD,AC⊥BD,
在Rt△AOB中,∠AOB=90°,
根据勾股定理,得:OA2+OB2=AB2,
即(AC+BD)2﹣AC•BD=AB2,
×12﹣AC•BD=52,
AC•BD=48,
故菱形ABCD的面积是48÷2=2.
故答案为:2.
本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
利用平行四边形性质得出AB平行CD,结合可得∠FAE为90°,然后进一步可得四边形AFCE三个内角为90°,从而证明出其为矩形.
【详解】
∵,,
∴∠AFC=∠AEC=90°,
∵四边形ABCD为平行四边形,
∴AB∥CD,
∴∠FAE+∠AEC=180°,
∴∠FAE=90°,
∴四边形AFCE为矩形.
本题主要考查了矩形的判定,熟练掌握相关判定定理是解题关键.
25、(1)该户6月份水费是45元;(2)y=3.3x-1.
【解析】
(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;
(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.
【详解】
解:(1)根据题意:该户用水18吨,按每吨2.5元收费,
2.5×18=45(元),
答:该户6月份水费是45元;
(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,
则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,
应缴水费y=2.5×20+3.3×(x-20),
整理后得:y=3.3x-1,
答:y关于x的函数关系式为y=3.3x-1.
本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.
26、(1)-19-6; (2)3-.
【解析】
分析:(1)用平方差公式和完全平方公式计算;(2)把式子中的二次根式都化为最简二次根式后,再加减.
详解:(1)()(﹣)﹣(+3)2
=7-5-(3+6+18)
=-19-6;
(2)
=
=3-.
点睛:本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号,能够使乘法公式的尽量使用乘法公式.
题号
一
二
三
四
五
总分
得分
批阅人
PM2.5指数
150
155
160
165
天 数
3
2
1
1
相关试卷
这是一份江西省宜春市丰城市第九中学2024-2025学年八年级上学期开学考试数学试题(B卷)(解析版),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省宜春市丰城市第九中学2024-2025学年八年级上学期开学考试数学试题(B卷)(原卷版),共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份江西省宜春市丰城市第九中学2024-2025学年八年级上学期开学考试数学试题(B卷)(原卷版+解析版),文件包含江西省宜春市丰城市第九中学2024-2025学年八年级上学期开学考试数学试题B卷原卷版docx、江西省宜春市丰城市第九中学2024-2025学年八年级上学期开学考试数学试题B卷解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。