江苏省扬州宝应县联考2024年九上数学开学学业水平测试模拟试题【含答案】
展开
这是一份江苏省扬州宝应县联考2024年九上数学开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,表示A点的位置,正确的是( )
A.距O点3km的地方
B.在O点的东北方向上
C.在O点东偏北40°的方向
D.在O点北偏东50°方向,距O点3km的地方
2、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是( )
A.AO=OCB.AC=BDC.AC⊥BDD.BD平分∠ABC
3、(4分)下列说法:① 平方等于64的数是8;② 若a,b互为相反数,ab≠0,则;③ 若,则的值为负数;④ 若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )
A.0个B.1个C.2个D.3个
4、(4分)有一组数据:3,3,5,6,1.这组数据的众数为( )
A.3B.5C.6D.1
5、(4分)直角三角形有两边的长分别是3、4,则剩下一边的长是( )
A.5B.C.2D.或5
6、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD为矩形的是( )
A.∠ABC=90°B.AC=BD
C.AD=BC,AB∥CDD.∠BAD=∠ADC
7、(4分)如图,在矩形ABCD中,AB=10, BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为( )
A.10B.8C.5D.6
8、(4分)下列说法中正确的是 ( )
A.若,则B.是实数,且,则
C.有意义时,D.0.1的平方根是
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,为边上一点,以为边作矩形.若,,则的大小为______度.
10、(4分)已知a+ = ,则a-=__________
11、(4分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 ▲ 人.
12、(4分)在一次函数y=(2﹣m)x+1中,y随x的增大而减小,则m的取值范围是_____.
13、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在边长为正方形中,点是对角线的中点,是线段上一动点(不包括两个端点),连接.
(1)如图1,过点作交于点,连接交于点.
①求证:;
②设,,求与的函数关系式,并写出自变量的取值范围.
(2)在如图2中,请用无刻度的直尺作出一个以为边的菱形.
15、(8分)因式分解:
(1);
(2).
16、(8分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.
(1)求点的坐标;
(2)求一次函数和反比例函数的表达式.
17、(10分)两地相距300,甲、乙两车同时从地出发驶向地,甲车到达地后立即返回,如图是两车离地的距离()与行驶时间()之间的函数图象.
(1)求甲车行驶过程中与之间的函数解析式,并写出自变量的取值范围.
(2)若两车行驶5相遇,求乙车的速度.
18、(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.
结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,当时,.
求这个函数的表达式;
在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象;
已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在第个中,:在边取一点,延长到,使,得到第个;在边上取一点,延长到,使,得到第个,…按此做法继续下去,则第个三角形中以为顶点的底角度数是__________.
20、(4分)y=(2m﹣1)x3m﹣2+3是一次函数,则m的值是_____.
21、(4分)如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.
22、(4分)如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.
23、(4分)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.
(1)求证:∠A=2∠CBD;
(2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.
(3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.
25、(10分)数学活动课上,老师提出问题:如图,有一张长4dm,宽1dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为x dm,体积为y dm1,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(1)列出y与x的几组对应值.
(4)在下面的平面直角坐标系中,描出补全后的表中各对对应值为坐标的点,并画出该函数的图象如下图;
结合画出的函数图象,解决问题:
当小正方形的边长约为 dm时,(保留1位小数),盒子的体积最大,最大值约为 dm1.(保留1位小数)
26、(12分)因式分解:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
用方向角和距离表示位置.
【详解】
如图,可用方向角和距离表示:A在O点北偏东50°方向,距O点3km的地方.
故选D
本题考核知识点:用方向角和距离表示位置.解题关键点:理解用方向角和距离表示位置的方法.
2、B
【解析】
分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.
详解:添加的条件是AC=BD.理由是:
∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.
故选B.
点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.
3、B
【解析】
根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答.
【详解】
① 平方等于64的数是±8;
② 若a,b互为相反数,ab≠0,则;
③ 若,可得a≥0,则的值为负数或0;
④ 若ab≠0,当a>0,b>0时,=1+1=2;当a>0,b
相关试卷
这是一份江苏省沭阳县联考2025届数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南通市海安市八校联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南通崇川区四校联考2025届九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。