|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省苏州市工业园区星海实验中学2025届九上数学开学调研试题【含答案】
    立即下载
    加入资料篮
    江苏省苏州市工业园区星海实验中学2025届九上数学开学调研试题【含答案】01
    江苏省苏州市工业园区星海实验中学2025届九上数学开学调研试题【含答案】02
    江苏省苏州市工业园区星海实验中学2025届九上数学开学调研试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州市工业园区星海实验中学2025届九上数学开学调研试题【含答案】

    展开
    这是一份江苏省苏州市工业园区星海实验中学2025届九上数学开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,边长为2的菱形ABCD中,∠A=60º,点M是边AB上一点,点N是边BC上一点,且∠ADM=15º,∠MDN=90º,则点B到DN的距离为( )
    A.B.C.D.2
    2、(4分)若代数式有意义,则实数x的取值范围是( )
    A.x>1B.x≠2C.x≥1且x≠2D.x≥﹣1且x≠2
    3、(4分)如图所示,DE是△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为( )
    A.B.4C.D.1
    4、(4分)如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )
    A.19B.20C.21D.22
    5、(4分)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
    A.25B.C.D.
    6、(4分)若一个多边形每一个内角都是135º,则这个多边形的边数是 ( )
    A.6B.8C.10D.12
    7、(4分)如图,在平面直角坐标系中,点是直线上一点,过作轴,交直线于点,过作轴,交直线于点,过作轴交直线于点 ,依次作下去,若点的纵坐标是1,则的纵坐标是( ).
    A.B.C.D.
    8、(4分)若,若,则的度数是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)正比例函数()的图象过点(-1,3),则=__________.
    10、(4分)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则CE与EO之间的数量关系是_____.
    11、(4分)如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,G,H为BC上的点连接DH,EG.若AB=5cm,BC=6cm,GH=3cm,则图中阴影部分的面积为_____.
    12、(4分)如图,正方形OMNP的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD、OMNP的边长都是4cm,则图中重合部分的面积是_____cm1.
    13、(4分)如图,菱形ABCD的两条对角线AC,四交于点O,若,,则菱形ABCD的周长为________。
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知:在直角坐标系中,A(﹣2,4)B(﹣4,2);A1、B1是A、B关于y轴的对称点;
    (1)请在图中画出A、B关于原点O的对称点A2,B2(保留痕迹,不写作法);并直接写出A1、A2、B1、B2的坐标.
    (2)试问:在x轴上是否存在一点C,使△A1B1C的周长最小,若存在求C点的坐标,若不存在说明理由.
    15、(8分)如图,已知:EG∥AD,∠1=∠G,试说明 AD平分∠BAC.
    16、(8分)为了节约能源,某城市开展了节约水电活动,已知该城市共有10000户家庭,活动前,某调查小组随机抽取了部分家庭每月的水电费的开支(单位:元),结果如左图所示频数直方图(每一组含前一个边界值,不含后一个边界值);活动后,再次调查这些家庭每月的水电费的开支,结果如表所示:
    (1)求所抽取的样本的容量;
    (2)如以每月水电费开支在225元以下(不含)为达到节约标准,请问通过本次活动,该城市大约增加了多少户家庭达到节约标准?
    (3)活动后,这些样本家庭每月水电费开支的总额能否低于6000元?
    (4)请选择一个适当的统计量分析活动前后的相关数据,并评价节约水电活动的效果.
    17、(10分)如图,直线过A(﹣1,5),P(2,a),B(3,﹣3).
    (1)求直线AB的解析式和a的值;
    (2)求△AOP的面积.
    18、(10分)先化简,再求值: ,其中x=
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)从甲、乙两班分别任抽30名学生进行英语口语测验,两个班测试成绩的方差是,,则_________班学生的成绩比较整齐.
    20、(4分)如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是 .
    21、(4分)截止今年4月2日,华为官方应用市场“学习强国”APP下载量约为88300000次.将数88300000科学记数法表示为_______.
    22、(4分)化简=_____.
    23、(4分)如图,菱形ABCD的对角线相交于点O,若AB=5,OA=4,则菱形ABCD的面积_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在△ABC中,∠C=90°,AB=20,若∠A=60°,求BC,AC的长.
    25、(10分)如图,在平面直角坐标系 中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数 的图象经过点.
    (1)求的值;
    (2)将绕某个点旋转后得到(点 ,, 的对应点分别为点,,),且 在轴上,点在函数的图象上,求直线的表达式.
    26、(12分)化简求值: 1(+1)(-1)-(1-1),其中=1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    连接BD,作BE⊥DN于E,利用菱形的性质和已知条件证得△ABD和△BCD是等边三角形,从而证得BD=AB=AD=2,∠ADB=∠CDB=60°,进而证得△BDE是等腰直角三角形,解直角三角形即可求得点B到DN的距离.
    【详解】
    解:连接BD,作BE⊥DN于E,
    ∵边长为2的菱形ABCD中,∠A=60°,
    ∴△ABD和△BCD是等边三角形,
    ∴BD=AB=AD=2,∠ADB=∠CDB=60°
    ∵∠A=60°,
    ∴∠ADC=180°-60°=120°,
    ∵∠ADM=15°,∠MDN=90°,
    ∴∠CDN=120°-15°-90°=15°,
    ∴∠EDB=60°-15°=45°,
    ∴BE=BD=,
    ∴点B到DN的距离为,
    故选:B.
    本题考查了菱形的性质,等边三角形的判定和性质,等腰直角三角形的判定和性质,解直角三角形等,作出辅助线,构建等腰直角三角形是解题的关键.
    2、D
    【解析】
    试题解析:由题意得,且
    解得且
    故选D.
    3、A
    【解析】
    根据DE为△ABC的中位线可得DE=BC=4,再根据∠AFB=90°,即可得到DF=AB=,从而求得EF=DE-DF=.
    故选A.
    点睛:此题主要考查了三角形的中位线,解答本题的关键是熟练掌握三角形的中位线平行于第三边,且等于第三边的一半;直角三角形斜边上的中线等于斜边的一半.
    4、D
    【解析】
    观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.
    【详解】
    第个图案中有黑色纸片3×1+1=4张
    第2个图案中有黑色纸片3×2+1=7张,
    第3图案中有黑色纸片3×3+1=10张,

    第n个图案中有黑色纸片=3n+1张.
    当n=7时,3n+1=3×7+1=22.
    故选D.
    此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.
    5、D
    【解析】
    本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.
    【详解】
    由勾股定理可知,
    ∵OB=,
    ∴这个点表示的实数是.
    故选D.
    本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法,解决本题的关键是根据勾股定理求出OB的长.
    6、B
    【解析】
    试题分析:设多边形的边数为n,则=135,解得:n=8
    考点:多边形的内角.
    7、B
    【解析】
    由题意分别求出A1,A2,A3,A4的坐标,找出An的纵坐标的规律,即可求解.
    【详解】
    ∵点B1的纵坐标是1,∴A1(,1),B1(,1).
    ∵过B1作B1A2∥y轴,交直线y=2x于点A2,过A2作AB2∥x轴交直线y于点B2…,依次作下去,∴A2(,),B2(1,),A3(1,2),B3(,2),A4(,2),…
    可得An的纵坐标为()n﹣1,∴A2019的纵坐标是()2018=1.
    故选B.
    本题考查了一次函数图象上点的坐标特征、两直线平行或相交问题以及规律型中数字的变化类,找出An的纵坐标是解题的关键.
    8、A
    【解析】
    根据相似三角形的对应角相等可得∠D=∠A.
    【详解】
    ∵△ABC∽△DEF,∠A=50°,
    ∴∠D=∠A=50°.
    故选:A.
    此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    将(-1,1)代入y=kx,求得k的值即可.
    【详解】
    ∵正比例函数()的图象经过点(-1,1),
    ∴1=-k,
    解得k=-1,
    故答案为:-1.
    此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    10、CE=3EO
    【解析】
    根据三角形的中位线得出DE=BC,DE∥BC,根据相似三角形的判定得出△DOE∽△BOC,根据相似三角形的性质求出CO=2EO即可.
    【详解】
    .解:CE=3EO,
    理由是:连接DE,
    ∵在△ABC中,BD,CE分别是边AC,AB上的中线,
    ∴DE=BC,DE∥BC,
    ∴△DOE∽△BOC,
    ∴ =,
    ∴CO=2EO,
    ∴CE=3EO,
    故答案为:CE=3EO.
    .本题考查了三角形的中位线定理和相似三角形的性质和判定,能求出DE=BC和△DOE∽△BOC是解此题的关键.
    11、6cm1.
    【解析】
    用四边形DBCE的面积减去△DOE的面积+△HOG的面积,即可得.
    【详解】
    解:连接DE,作AF⊥BC于F,
    ∵D,E分别是AB,AC的中点,
    ∴DE=BC=3,DE∥BC,
    ∵AB=AC,AF⊥BC,
    ∴BF=BC=3,
    在Rt△ABF中,AF==4,
    ∴△ABC的面积=×6×4=11,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴△ADE的面积=11×=3,
    ∴四边形DBCE的面积=11﹣3=9,
    △DOE的面积+△HOG的面积=×3×1=3,
    ∴图中阴影部分的面积=9﹣3=6(cm1),
    故答案为6cm1.
    本题考查的知识点是三角形中位线定理,解题关键是作适当的辅助线进行解题.
    12、2.
    【解析】
    根据题意可得:△AOG≌△DOF(ASA),所以S四边形OFDG=S△AOD=S 正方形ABCD,从而可求得其面积.
    【详解】
    解:如图,∵正方形ABCD和正方形OMNP的边长都是2cm,

    ∴OA=OD,∠AOD=∠POM=90°,∠OAG=∠ODF=25°,
    ∴∠AOG=∠DOF,
    在△AOG和△DOF中,
    ∵ ,
    ∴△AOG≌△DOF(ASA),
    ∴S四边形OFDG=S△AOD=S 正方形ABCD=× =2;
    则图中重叠部分的面积是2cm1,
    故答案为:2.
    本题考查正方形的性质,题中重合的部分的面积是不变的,且总是等于正方形ABCD面积的.
    13、
    【解析】
    首先根据菱形的性质可知菱形的对角线垂直平分,然后在Rt△AOD中利用勾股定理求出AD的长,再由菱形的四边形相等,可得菱形ABCD的周长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=AC=3,DO=BD=2,
    在Rt△AOD中,AD=,
    ∴菱形ABCD的周长为4.
    故答案为:4.
    本题考查了菱形的性质以及勾股定理的知识,解答本题的关键是掌握菱形的对角线互相垂直且平分以及勾股定理等知识.
    三、解答题(本大题共5个小题,共48分)
    14、(1)点A1、A2、B1、B2的坐标分别为(2,4),(4,2),(2,﹣4),(4,﹣2);(2)存在.
    【解析】
    (1)如图,分别延长AO和BO,使A2O=AO,B2O=BO,从而得到点A2,B2,然后利用关于y轴对称和原点对称的点的坐标特征写出点A1、A2、B1、B2的坐标;
    (2)连接A1B2交x轴于C,如图,利用点B1与B2关于x轴对称得到CB1=CB2,利用两点之间线段最短得到此时CA1+CB1的值最小,所以△A1B1C的周长最小,接着利用待定系数法求出直线A1B2的解析式为y=−3x+10,然后求出直线与x轴的交点坐标即可.
    【详解】
    解:(1)如图,点A2,B2为所作,点A1、A2、B1、B2的坐标分别为(2,4),(4,2),(2,﹣4),(4,﹣2);
    (2)存在.
    连接A1B2交x轴于C,如图,
    ∵点B1与B2关于x轴对称,
    ∴CB1=CB2,
    ∴CA1+CB1=CA1+CB2=A1B2,
    此时CA1+CB1的值最小,则△A1B1C的周长最小,
    设直线A1B2的解析式为y=kx+b,
    把A1(2,4),B2(4,﹣2)代入得,解得,
    ∴直线A1B2的解析式为y=﹣3x+10,
    当y=0时,﹣3x+10=0,解得x=,
    ∴C点坐标为(,0).
    本题考查了轴对称变换与最短路径问题,熟练掌握相关性质是解题关键.
    15、见解析
    【解析】
    先根据已知条件推出AD∥EF,再由平行线的性质得出∠1=∠2,∠3=∠G,结合已知通过等量代换即可得到∠2=∠3,根据角平分线的定义可知AD是∠BAC的平分线.
    【详解】
    ∵EG∥AD,
    ∴∠1=∠2,∠3=∠G,
    ∵∠G=∠1,
    ∴∠2=∠3.
    ∴AD平分∠BAC.
    此题考查平行线的性质,解题关键在于掌握其性质定义.
    16、(1)40;(2)1250户;(3)活动后,这些样本家庭每月水电费开支的总额不低于6000元.(4)开支在225以下的户数上可以看出节约水电活动的效果还不错.
    【解析】
    (1)将频数分布直方图各分组频数相加即可得样本容量;
    (2)分别计算出活动前、后达到节约标准的家庭数,相减即可得;
    (3)取各分组的组中值,再分别乘以各分组的频数,相加即可得;
    (4)根据统计图中的数据可以解答本题,本题答案不唯一,只要合理即可..
    【详解】
    解:(1)所抽取的样本的容量为6+12+11+7+3+1=40;
    (2)活动前达到节约标准的家庭数为10000×=7250(户),
    活动后达到节约标准的家庭数为10000×=8500(户),
    85007250=1250(户),
    ∴该城市大约增加了1250户家庭达到节约标准;
    (3)这40户家庭每月水电费开支总额为:
    7×100+13×150+14×200+4×250+2×300=7050(元),
    ∴活动后,这些样本家庭每月水电费开支的总额不低于6000元.
    (4)根据题意可知,开支在225以下的户数上可以看出节约水电活动的效果还不错.
    本题考查的是频数分布直方图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.频数分布直方图能清楚地表示出每个项目的数据.
    17、(2)-2(2)
    【解析】
    (2)设直线的表达式为y=kx+b,把点A. B的坐标代入求出k、b,即可得出答案; 把P点的坐标代入求出即可得到a;
    (2)根据坐标和三角形面积公式求出即可.
    【详解】
    (2)设直线AB的解析式为y=kx+b(k≠0),
    将A(﹣2,5),B(2,﹣2)代入y=kx+b,得:,
    解得:,
    ∴直线AB的解析式为y=﹣2x+2.
    当x=2时,y=﹣2x+2=﹣2,
    ∴点P的坐标为(2,﹣2),
    即a的值为﹣2.
    (2)设直线AB与y轴交于点D,连接OA,OP,如图所示.
    当x=0时,y=﹣2x+2=2,
    ∴点D的坐标为(0,2).
    S△AOP=S△AOD+S△POD=OD•|xA|+OD•|xP|=×2×2+×2×2=.
    本题考查一元一次方程和直角坐标系的问题,解题的关键是掌握求解一元一次方程.
    18、,
    【解析】
    将原式进行因式分解化成最简结果,将x代入其中,计算得到结果.
    【详解】
    解:原式=
    =
    =
    因为x= ,所以原式= .
    考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、乙
    【解析】
    根据方差的性质即可求解.
    【详解】
    ∵,,
    则>,∴乙班学生的成绩比较稳定.
    故填乙
    此题主要考查方差的性质,解题的关键是熟知数据的稳定性.
    20、24.
    【解析】
    试题分析: ∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB=∠DAB,∠PBA=∠ABC,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AB∥CD,∴∠PAB=∠DPA,∴∠DAP=∠DPA,∴AD=DP=5,同理:PC=CB=5,
    即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24.
    考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.
    21、.
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    解:将88300000用科学记数法表示为:.
    故答案为:.
    此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    22、
    【解析】

    故答案为
    考点:分母有理化
    23、3
    【解析】
    根据菱形的性质:菱形的两条对角线互相垂直可计算出该菱形的面积.
    【详解】
    解:因为四边形ABCD是菱形,
    所以AC⊥BD.
    在Rt△AOB中,利用勾股定理求得BO=1.
    ∴BD=6,AC=2.
    ∴菱形ABCD面积为×AC×BD=3.
    故答案为3.
    本题考查了菱形的性质的灵活运用,熟练运行菱形的性质来求其面积是解决此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    由已知可得,∠B=30°,根据30°角直角三角形的性质可得AC=10,再由勾股定理即可求得BC的长.
    【详解】
    解:∵∠C=90°,∠A=60°,
    ∴∠B=180°-∠C-∠A=180°-90°-60°=30°.
    ∴AC=AB=×20=10.
    在Rt△ABC中,由勾股定理得BC===10.
    本题考查勾股定理.熟记定理是关键.
    25、(1)5;(4)y=4x-1.
    【解析】
    (1)根据直角三角形的性质和坐标与图形的特点求得点的坐标,将其代入反比例函数解析式求得的值;
    (4)根据旋转的性质推知:,故其对应边、角相等:,,,由函数图象上点的坐标特征得到:,.结合得到,利用待定系数法求得结果.
    【详解】
    (1)∵Rt△ABC的直角边AB在x轴上,∠ABC=90°,点C的坐标为(5,4),
    ∴点B的坐标为(5,0),CB=4.
    ∵M是BC边的中点,
    ∴点M的坐标为(5,4).
    ∵函数的图像进过点M,
    ∴k=5×4=5.
    (4)∵△ABC绕某个点旋转180°后得到△DEF,
    ∴△DEF≌△ABC.
    ∴DE=AB,EF=BC,∠DEF=∠ABC=90°.
    ∵点A的坐标为(1,0),点B的坐标为(5,0),
    ∴AB=4.
    ∴DE=4.
    ∵EF在y轴上,
    ∴点D的横坐标为4.
    ∵点D在函数的图象上,
    当x=4时,y=5.
    ∴点D的坐标为(4,5).
    ∴点E的坐标为(0,5).
    ∵EF=BC=4,
    ∴点F的坐标为(0,-1).
    设直线DF的表达式为y=ax+b,将点D,F的坐标代入,
    得 解得 .
    ∴直线DF的表达式为y=4x-1.
    本题考查了待定系数法求一次函数解析式,反比例函数图象上点的坐标特征,旋转的性质.解题时,注意函数思想和数形结合数学思想的应用.
    26、;0
    【解析】
    先利用乘法公式和单项式乘多项式法则将原式进行化简,再将x=1代入求值即可.
    【详解】
    解:原式=1(x1-1)-1x1+x
    =
    =
    当x=1时, 原式= 0
    本题考查的是整式的化简求值,能够准确计算是解题的关键.
    题号





    总分
    得分
    相关试卷

    2024年江苏省苏州市工业园区星海实验中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024年江苏省苏州市工业园区星海实验中学数学九年级第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省苏州市工业园区星海实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份江苏省苏州市工业园区星海实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,结果正确的是,已知,方程的解是等内容,欢迎下载使用。

    江苏省苏州市工业园区星海实验中学2023-2024学年九上数学期末学业水平测试试题含答案: 这是一份江苏省苏州市工业园区星海实验中学2023-2024学年九上数学期末学业水平测试试题含答案,共8页。试卷主要包含了如图所示的几何体的左视图为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map