


江苏省邳州市2025届九年级数学第一学期开学教学质量检测试题【含答案】
展开这是一份江苏省邳州市2025届九年级数学第一学期开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,若当时,函数的最大值与最小值之差是1,则a的值为( )
A.B.C.2D.3
2、(4分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )
A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD
3、(4分)如图,已知,是的角平分线,,则点D到的距离是( )
A.3B.4C.5D.6
4、(4分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为( )
A.30°B.40°C.70°D.80°
5、(4分)若点Α在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为 ( )
A.b>2B.b>-2C.b<2D.b<-2
6、(4分)己知一个多边形的内角和是360°,则这个多边形是( )
A.四边形B.五边形C.六边形D.七边形
7、(4分)若代数式在实数范围内有意义,则的取值范围是
A.x<1B.x≤1C.x>1D.x≥1
8、(4分)下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为( )
A.31B.30C.28D.25
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:x2-2x+1=__________.
10、(4分)如图,正方形ABOC的面积为4,反比例函数的图象过点A,则k=_______.
11、(4分)如图,在中,,,的面积为8,则四边形的面积为______.
12、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
13、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P'的坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)考虑下面两种移动电话计费方式
(1)直接写出两种计费方式的费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式.
(2)求出两种计费方式费用相等的本地通话时间是多少分钟.
15、(8分)列方程解应用题
今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌. 企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元. 求A、B两厂生产的口罩单价分别是多少元?
16、(8分)先化简,再求值:,其中- 1.
17、(10分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.
(1)直接写出直线的解析式为______,______.
(2)在直线上存在点,使是的中线,求点的坐标;
(3)如图2,在轴正半轴上存在点,使,求点的坐标.
18、(10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.
(1)求证:BE=AF;
(2)若∠ABC=60°,BD=6,求四边形ADEF的面积。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.
20、(4分)已知点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,若y1>y2,则x1,x2的大小关系是_____.
21、(4分)某校对n名学生的体育成绩统计如图所示,则n=_____人.
22、(4分)一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.
23、(4分)如图,在直角坐标系中,正方形、的顶点均在直线上,顶点在轴上,若点的坐标为,点的坐标为,那么点的坐标为____,点的坐标为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线y= x+6分别与x轴、y轴交于A、B两点:直线y= x与AB于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的进度沿x轴向左运动.过点E作x轴的垂线,分別交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠的图形的周长为L个单位长度,点E的运动时间为t(秒).
(1)直接写出点C和点A的坐标.
(2)若四边形OBQP为平行四边形,求t的值.
(3)0
(1)求证:四边形为菱形
(2)求菱形的面积;
(3)若是菱形的边上的点,则满足的点的个数是______个.
26、(12分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据反比例函数的性质和题意,利用分类讨论的数学思想可以求得a的值,本题得以解决.
【详解】
解:当时,
函数中在每个象限内,y随x的增大而增大,
∵当1≤x≤2时,函数的最大值与最小值之差是1,
∴,得a=-2(舍去),
当a>0时,
函数中在每个象限内,y随x的增大而减小,
∵当1≤x≤2时,函数的最大值与最小值之差是1,
∴,得a=2,
故选择:C.
本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和分类讨论的数学思想解答.
2、D
【解析】
A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;
B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;
C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;
D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.
故选D.
3、A
【解析】
首先过点D作于E,由在中,是的角平分线,根据角平分线的性质,即可得.
【详解】
过点D作于E,
∵在中,,
即,
∴是的角平分线,
∴,
∴点D到的距离为3,
故选A.
本题考查了角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解此题的关键.
4、A
【解析】
由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.
【详解】
∵AB=AC,∠A=40°,
∴∠ABC=∠C=(180°−∠A)÷2=70°,
∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∴∠CBE=∠ABC-∠ABE=30°,
故选:A.
本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.
5、D
【解析】
分析:由点(m,n)在一次函数的图像上,可得出3m+b=n,再由3m-n>1,即可得出b<-1,此题得解.
详解:
∵点A(m,n)在一次函数y=3x+b的图象上,
∴3m+b=n.
∵3m-n>1,
∴3m-(3m+b)>1,即-b>1,
∴b<-1.
故选D.
点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n>1,得出-b>1是解题的关键.
6、A
【解析】
根据多边形的内角和公式即可求解.
【详解】
设边数为n,则(n-2)×180°=360°,
解得n=4
故选A.
此题主要考查多边形的内角和,解题的关键是熟知公式的运用.
7、D
【解析】
根据二次根式有意义的条件列出关于x 的不等式,求出x的取值范围即可.
【详解】
由题意得,x-1≥0,解得x≥1.故选D.
本题主要考查二次根式有意义的条件,要使二次根式有意义,其被开方数应为非负数.
8、A
【解析】
由于图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,第n个图形矩形的个数是5n+1把n=6代入求出即可.
【详解】
解:∵图①有矩形有6个=5×1+1,
图②矩形有11个=5×2+1,
图③矩形有16=5×3+1,
∴第n个图形矩形的个数是5n+1
当n=6时,5×6+1=31个.
故选:A.
此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(x-1)1.
【解析】
由完全平方公式可得:
故答案为.
错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
10、-4
【解析】
试题分析:反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为.
解:依题意得,
又∵图象位于第二象限,
∴
∴.
考点:反比例函数中k的几何意义
点评:本题属于基础应用题,只需学生熟练掌握反比例函数中k的几何意义,即可完成.
11、2
【解析】
根据相似三角形的判定与性质,可得△ABC的面积,根据面积的和差,可得答案.
【详解】
解:∵DE∥BC,,
∴△ADE∽△ABC,,
∴=( )2=,
∵△ADE的面积为8,
∴S△ABC=1.
S四边形DBCE=S△ABC-S△ADE=1-8=2,
故答案为:2.
本题考查相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S△ABC=1是解题关键.
12、<<
【解析】
分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.
【详解】
解:当x=1时,=-2×1=-2;
当x=-1时,=-2×(-1)=2;
当x=-2时,=-2×(-2)=4;
∵-2<2<4
∴<<
故答案为:<<.
本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.
13、(1,5)
【解析】
根据向右平移横坐标加,向上平移纵坐标加求解即可.
【详解】
解:∵点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P',
∴点P′的横坐标为-2+3=1,
纵坐标为1+4=5,
∴点P′的坐标是(1,5).
故答案为(1,5).
本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
三、解答题(本大题共5个小题,共48分)
14、(1)方式一y=0.3x+30,方式二y=0.4x;(2)300分钟.
【解析】
(1)根据图表中两种计费方式的费用y关于本地通话时间x的关系,直接写出即可;
(2)令两种方式中的函数解析式相等即可求出x.
【详解】
解:(1)由题意可得,
方式一:y=30+0.3x=0.3x+30,
方式二:y=0.4x,
即方式一中费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式是y=0.3x+30,
方式二中费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式是y=0.4x;
(2)令0.3x+30=0.4x,
解得,x=300,
答:两种计费方式费用相等的本地通话时间是300分钟.
一次函数在实际生活中的应用是本题的考点,根据题意列出函数解析式是解题的关键.
15、A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.
【解析】
设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,根据数量=总价÷单价结合在B厂订购的口罩数量是A厂的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,
依题意得:,
解得:x=2,
经检验,x=2是原方程的解,且符合题意,
∴x+0.2=2.2,
答:A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
16、
【解析】
试题分析:先根据分式混合运算的法则把原式进行化简,然后代入计算即可.
试题解析:解:原式==
当x=时,原式==.
17、(1),22;(2);(3)
【解析】
(1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;
(2)作轴于,轴于,易得,则,
再将x=4代入得到y=11,所以;
(3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.
【详解】
解:(1)直线沿x轴向右平移2个单位长度,则
y=-2(x-2)-7
=-2x-3
将和联立,得
解得
易得
故答案为:,22;
(2)作轴于,轴于,
∵
∴,,
∵为的中线,
∴,
∵,
∴,
∴,
在中,
当时,,
∴.
(3)由(1)得,,
∴, ,
在轴正半轴上取一点,使,
∵,
∴,
∴,
∵,
∴,
∴,
在中,由勾股定理可得:,
∴.
本题考查了一次函数和几何的综合,熟练掌握一次函数的图象和性质是解题关键.
18、(1)详见解析;(2)
【解析】
(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;
(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.
【详解】
(1)证明:∵DE∥AB,EF∥AC,
∴四边形ADEF是平行四边形,∠ABD=∠BDE,
∴AF=DE,
∵BD是△ABC的角平分线,
∴∠ABD=∠DBE,
∴∠DBE=∠BDE,
∴BE=DE,
∴BE=AF;
(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,
∵∠ABC=60°,BD是∠ABC的平分线,
∴∠ABD=∠EBD=30°,
∴DG=BD=×6=3,
∵BE=DE,
∴BH=DH=BD=3,
∴BE= =2,
∴DE=BE=2 ,
∴四边形ADEF的面积为:DE⋅DG=6.
此题考查角平分线的性质,平行四边形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形,解题关键在于作辅助线
一、填空题(本大题共5个小题,每小题4分,共20分)
19、×()1.
【解析】
已知正方形A1B1C1D1的边长为,然后得到正方形A2B2C2D2的边长为
,然后得到规律,即可求解.
【详解】
解:∵正方形A1B1C1D1的边长为,
正方形A2B2C2D2的边长为
正方形A3B3C3D3的边长为,
…,
正方形A2018B2018C2018D2018的边长为.
故答案为.
本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.
20、x1<x1.
【解析】
根据题目中的函数解析式可以判断函数图象在第几象限和y随x的变化趋势,从而可以解答本题.
【详解】
∵反比例函数y=(x>0),
∴该函数图象在第一象限,y随x的增大而减小,
∵点P(x1,y1),Q(x1,y1)是反比例函数y=(x>0)图象上两点,y1>y1,
∴x1<x1,
故答案为:x1<x1.
本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
21、1
【解析】
根据统计图中的数据,可以求得n的值,本题得以解决.
【详解】
解:由统计图可得,
n=20+30+10=1(人),
故答案为:1.
本题考查折线统计图,解答本题的关键是明确题意,提取统计图中的有效信息解答.
22、五
【解析】
设多边形边数为n.
则360°×1.5=(n−2)⋅180°,
解得n=5.
故选C.
点睛:多边形的外角和是360度,多边形的内角和是它的外角和的1.5倍,则多边形的内角和是540度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.
23、
【解析】
先求出点、的坐标,代入求出解析式,根据=1,(3,2)依次求出点点、、、的纵坐标及横坐标,得到规律即可得到答案.
【详解】
∵(1,1),(3,2),
∴正方形的边长是1,正方形的边长是2,
∴(0,1),(1,2),
将点、的坐标代入得,
解得,
∴直线解析式是y=x+1,
∵=1,(3,2),
∴的纵坐标是,横坐标是,
∴的纵坐标是,横坐标是,
∴的纵坐标是,横坐标是,
∴的纵坐标是,横坐标是,
由此得到的纵坐标是,横坐标是,
故答案为:(7,8),(,).
此题考查一次函数的定义,函数图象,直角坐标系中点的坐标规律,能根据图象求出点的坐标并总结规律用于解题是关键.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)2;(3).
【解析】
(1)把y= x+6和 y= x联立组成方程组,解方程组求得方程组的解,即可得点C的坐标;在直线y= x+6中,令y=0,求得x的值,即可得点A的坐标;(2)用t表示出点P、Q的坐标,求得PQ的长,由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,由此可得,即可求得t值;(3)由题意可知,正方形PQMN与△ACD重叠的图形是矩形,由此求得L与t之间的函数解析式即可.
【详解】
(1)C的坐标为( ),A的坐标为(8,0);
(2)∵点B直线y= x+6与y轴的交点,
∴B(0,6),
∴OB=6,
∵A的坐标为(8,0),
∴OA=8,
由题意可得,OE=8-t,
∴P(8-t,),Q(8-t,)
∴=10-2t,
由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,
所以有 ,解得t=2;
(3)当0<t<5时, .
本题是一次函数与结合图形的综合题,根据题意求得QP=10-2t是解决问题的关键.
25、(1)见解析;(2);(3)1
【解析】
(1)根据题意证明△AED≌△AEB≌△CFD≌△CFB,得到四边相等即可证明是菱形;
(2)求出菱形的对角线的长,利用菱形的面积等于对角线乘积的一半解决问题即可.
(3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.求出PE+PF的最值,判断出在线段AD上存在两个点P满足条件,由此即可判断.
【详解】
(1)∵四边形ABCD是菱形,
∴AD≡AB=CD=CB,∠DAE=∠BAE=∠DCF=∠BCF,
∴△AED≌△AEB≌△CFD≌△CFB(SAS)
∴DE=BE=DF=BF,
∴四边形DEBF为菱形.
(2)连接DB,交AC于O,
∵四边形ABCD是菱形,
∴DB⊥AC,,
又∵AE=EF=FC=2,
∴AO=3,AD=2DO,
∴,∴,
∴
(3)不妨假设点P在线段AD上,作点E关于AD的对称点E′,连接FE′交AD于点P,此时PE+PF的值最小.
易知PE+PF的最小值=2
当点P由A运动到D时,PE+PF的值由最大值6减小到2再增加到4,
∵PE+PE=,2<<4,
∴线段AD上存在两个点P,满足PE+PF=
∴根据对称性可知:菱形ABCD的边上的存在1个点P满足条件.
故答案为1.
本题考查菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
26、2.
【解析】
根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.
【详解】
解:
原式
=2
本题考核知识点:二次根式化简求值. 解题关键点:掌握乘法公式.
题号
一
二
三
四
五
总分
得分
方式一
方式二
月租费(月/元)
30
0
本地通话费(元/分钟)
0.30
0.40
相关试卷
这是一份江苏省庙头中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省徐州市邳州市八路中学数学九年级第一学期开学复习检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省江阴市初级中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。