|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省靖江市生祠初级中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    江苏省靖江市生祠初级中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】01
    江苏省靖江市生祠初级中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】02
    江苏省靖江市生祠初级中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省靖江市生祠初级中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】

    展开
    这是一份江苏省靖江市生祠初级中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各组数中能作为直角三角形的三边长的是( ).
    A.1,,1B.2,3,4C.4,5,6D.8,13,5
    2、(4分)平行四边形不一定具有的性质是( )
    A.对角线互相垂直B.对边平行且相等C.对角线互相平分D.对角相等
    3、(4分)某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是( )
    A.平均数是2B.众数是2C.中位数是2D.方差是2
    4、(4分)一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为( )
    A.x≥2B.x<2C.x>2D.x≤2
    5、(4分)如图,、两处被池塘隔开,为了测量、两处的距离,在外选一点,连接、,并分别取线段、的中点、,测得,则的长为( )
    A.B.C.D.
    6、(4分)甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )
    A.从甲袋摸到黑球的概率较大
    B.从乙袋摸到黑球的概率较大
    C.从甲、乙两袋摸到黑球的概率相等
    D.无法比较从甲、乙两袋摸到黑球的概率
    7、(4分)如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为
    A.6B.5C.4D.3
    8、(4分)如图,矩形ABCD中,E,F分别是线段BC,AD的中点,AB=2,AD=4,动点P沿EC,CD,DF的路线由点E运动到点F,则△PAB的面积s是动点P运动的路径总长x的函数,这个函数的大致图象可能是
    A.AB.BC.CD.D
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.
    10、(4分)比较大小:2____3(填“ >、<、或 = ”).
    11、(4分)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.
    12、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=6cm,GH=8cm,则边AB的长是__________
    13、(4分)当m=_____时,x2+2(m﹣3)x+25是完全平方式.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1
    (1)当点A1落在AC上时
    ①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;
    ②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;
    (2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.
    15、(8分)如图,是边长为2的等边三角形,将沿直线平移到的位置,连接.
    (1)求平移的距离;
    (2)求的长.
    16、(8分)正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.
    17、(10分)如图,正比例函数与反比例函数的图像交于A,B两点,过点A作AC⊥x轴,垂足为C,△ACO的面积为1.
    (1)求反比例函数的表达式;
    (2)点B的坐标为 ;
    (3)当时,直接写出x的取值范围.
    18、(10分)正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.
    (1)已知点F在线段BC上.
    ①若AB=BE,求∠DAE度数;
    ②求证:CE=EF;
    (2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为______.
    20、(4分)在函数中,自变量的取值范围是__________.
    21、(4分)如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________.
    22、(4分)矩形ABCD中,对角线AC、BD交于点O,于,若,,则____.
    23、(4分)平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.
    25、(10分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:
    请你根据以上提供的信息解答下列问题:
    (1)求一班参赛选手的平均成绩;
    (2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?
    (3)求二班参赛选手成绩的中位数.
    26、(12分)在中,,是边上的中线,是的中点,过点作交的延长线于点,连接.
    (1)如图1,求证:
    (2)如图2,若,其它条件不变,试判断四边形的形状,并证明你的结论.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据勾股定理的逆定理对各选项进行逐一分析即可.
    【详解】
    A选项:,故可以构成直角三角形;
    B选项:,故不能构成直角三角形;
    C选项:,故不能构成直角三角形;
    D选项:,故不能构成直角三角形;
    故选:A.
    考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
    2、A
    【解析】
    结合平行四边形的性质即可判定。
    【详解】
    结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.
    故选A.
    本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键。
    3、D
    【解析】
    根据众数、中位数、平均数和方差的计算公式分别进行解答,即可得出答案.
    【详解】
    解:平均数是:(2+3+2+1+2)÷5=2;
    数据2出现了3次,次数最多,则众数是2;
    数据按从小到大排列:1,2,2,2,3,则中位数是2;
    方差是:[(2﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2]=,
    则说法中错误的是D;
    故选D.
    本题考查众数、中位数、平均数和方差,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量;众数是一组数据中出现次数最多的数.
    4、D
    【解析】
    直接将解集在数轴上表示出来即可,注意实心和空心的区别
    【详解】
    数轴上读出不等式解集为x≤2,故选D
    本题考查通过数轴读出不等式解集,属于简单题
    5、C
    【解析】
    根据题意直接利用三角形中位线定理,可求出.
    【详解】
    、是、的中点,
    是的中位线,


    .
    故选.
    本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.
    6、B
    【解析】
    试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.
    考点:概率的计算
    7、B
    【解析】
    设,由翻折的性质可知,则,在中利用勾股定理列方程求解即可.
    【详解】
    解:设,由翻折的性质可知,则.
    是BC的中点,

    在中,由勾股定理得:,即,
    解得:.

    故选:B.
    本题主要考查的是翻折的性质、勾股定理的应用,由翻折的性质得到,,从而列出关于x的方程是解题的关键.
    8、C
    【解析】
    分点P在EC、CD、DF上运动,根据三角形面积公式进行求解即可得.
    【详解】
    当点P在EC上运动时,此时0≤x≤2,PB=2+x,则S△PAB==×2(2+x)=x+2;
    当点P在CD运动时,此时2当点P在DF上运动时,此时4观察选项,只有C符合,
    故选C.
    本题考查了动点问题的函数图象,分情况求出函数解析式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、144(1﹣x)2=1.
    【解析】
    设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.
    【详解】
    设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,
    根据题意,得144(1﹣x)2=1.
    故答案为144(1﹣x)2=1.
    本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.
    10、<
    【解析】
    试题分析:将两式进行平方可得:=12,=18,因为12<18,则<.
    11、
    【解析】
    由从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,有三种取法,其中抽到九年级(1)班的有一种,所以恰好抽到九年级(1)班的概率是:.
    故答案为
    12、.
    【解析】
    利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得GE的长,进而求出HM,AB即为边2HM的长.
    【详解】
    解:∵∠HEM=∠HEB,∠GEF=∠CEF,∴∠HEF=∠HEM+∠GEF=∠BEG+∠GEC=×180°=90°,
    同理可得:∠EHG=∠HGF=∠EFG=90°,
    ∴四边形EFGH为矩形,
    ∵EH=6cm,GH=8cm,
    ∴GE=10
    由折叠可知,HM⊥GE,AH=HM,BH=HM,
    ∵,
    ∴AB=AH+BH=2HM=2×=.
    故答案为.
    此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.
    13、8或﹣1
    【解析】
    先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.
    【详解】
    解:∵x1+1(m﹣3)x+15=x1+1(m﹣3)x+51,
    ∴1(m﹣3)x=±1×5x,
    m﹣3=5或m﹣3=﹣5,
    解得m=8或m=﹣1.
    故答案为:8或﹣1.
    本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.
    三、解答题(本大题共5个小题,共48分)
    14、(1)①证明见解析;②证明见解析;(2)
    【解析】
    (1)①首先证明△ABA1是等边三角形,可得∠AA1B=∠A1BD1=60°,即可解决问题.
    ②首先证明△OCD1≌△OBA(AAS),推出OC=OB,再证明△DCO≌△ABO(SAS)即可解决问题.
    (2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.利用勾股定理求出AE,A1E即可解决问题.
    【详解】
    (1)证明:①如图1中,
    ∵∠BAC=60°,BA=BA1,
    ∴△ABA1是等边三角形,
    ∴∠AA1B=60°,
    ∵∠A1BD1=60°,
    ∴∠AA1B=∠A1BD1,
    ∴AC∥BD1,
    ∵AC=BD1,
    ∴四边形ABD1C是平行四边形.
    ②如图2中,连接BD1.
    ∵四边形ABD1C是平行四边形,
    ∴CD1∥AB,CD1=AB,
    ∠OCD1=∠ABO,
    ∵∠COD1=∠AOB,
    ∴△OCD1≌△OBA(AAS),
    ∴OC=OB,
    ∵CD=BA,∠DCO=∠ABO,
    ∴△DCO≌△ABO(SAS),
    ∴DO=OA.
    (2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.
    在Rt△A1BC中,∵∠CA1B=90°,BC=2.AB=3,
    ∴CA1==4,
    ∵•A1C•A1B=•BC•A1F,
    ∴A1F=,
    ∵∠A1FB=∠A1EB=∠EBF=90°,
    ∴四边形A1EBF是矩形,
    ∴EB=A1F=,A1E=BF=,
    ∴AE=3﹣=,
    在Rt△AA1E中,AA1==.
    本题属于四边形综合题,考查了矩形的性质,全等三角形的判断和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.
    15、(1)2;(2)
    【解析】
    (1)由平移的性质,即可得出平移距离;
    (2)由平移的性质以及边长关系,可判定∠BAE=90°,利用勾股定理即可得解.
    【详解】
    (1)∵△DCE由△ABC平移而成
    ∴△ABC的平移距离为BC=2;
    (2)由平移,得
    BE=2BC=4,AB=AC=CE
    ∵等边△ABC
    ∴∠BAC=∠ACB=60°
    ∴∠CAE=∠CEA=30°
    ∴∠BAE=∠BAC+∠CAE=60°+30°=90°
    ∴.
    此题主要考查等边三角形、平移的性质以及勾股定理的运用,熟练掌握,即可解题.
    16、见解析.
    【解析】
    分两种情况讨论:(1)当正方形边与正方形的对角线重合时;(2)当转到一般位置时,由题求证,故两个正方形重叠部分的面积等于三角形的面积,得出结论.
    【详解】
    (1)当正方形绕点转动到其边,分别于正方形的两条对角线重合这一特殊位置时,
    显然;
    (2)当正方形绕点转动到如图位置时,
    ∵四边形为正方形,
    ∴,,,即
    又∵四边形为正方形,
    ∴,即,
    ∴,
    在和中,

    ∴,
    ∵,
    又,
    ∴.
    此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点.
    17、解: ;
    (2)B(-2,-1);
    (3)-22.
    【解析】
    (1)根据反比例函数图象的性质,反比例函数上任意一点向x轴(或y轴)作垂线,这一点、所交点与原点之间所围成的直角三角形的面积等于 ,图象经过一、三象限k>0;
    (2)联立正比例函数与反比例函数,解出的x,y分别为交点的横、纵坐标,这里需注意解得的解集有两个,说明交点有两个,需要考虑点所在位于哪一个象限;
    (3)观察图像可以解决问题,谁的图像在上面,谁对应的函数值大,这里需过两个交点作x轴垂线,两条垂线与y轴将图象分成四部分,分别讨论.
    【详解】
    解:(1)∵△ACO的面积为1,C⊥x轴
    ∴,
    即,
    ∵点A是函数的点
    ∴,
    ∵反比例函数的图像在第一、三象限,
    ∴k>0
    ∴k=8,反比例函数表达式为 ;
    (2)联立 ,可解得 或,
    ∵B点在第三象限,
    ∴点B坐标为(-2,-1).
    (3)根据(2)易得A点坐标为(2,1),
    所以当-22时,
    (1)考查反比例函数图象的性质问题,图中△ACO的面积正好是,图象在第一、三象限,所以k>0;
    (2)考查函数交点问题,两个函数的交点的横、纵坐标分别是联立它们,所形成的方程组的解集对应的x、y值;
    (3)可借助图象比较两个函数的大小,这里一定要注意分不同区间去考虑.
    18、(1)①22.5°;②证明见解析;(2)或.
    【解析】
    (1)①先求得∠ABE的度数,然后依据等腰三角形的性质和三角形内角和定理求得∠BAE的度数,然后可求得∠DAE度数;
    ②先利用正方形的对称性可得到∠BAE=∠BCE,然后在证明又∠BAE=∠EFC,通过等量代换可得到∠BCE=∠EFC;
    (2)当点F在BC上时,过点E作MN⊥BC,垂直为N,交AD于M.依据等腰三角形的性质可得到FN=CN,从而可得到NC的长,然后可得到MD的长,在Rt△MDE中可求得ED的长;当点F在CB的延长线上时,先根据题意画出图形,然后再证明EF=EC,然后再按照上述思路进行解答即可.
    【详解】
    (1)①∵ABCD为正方形,∴∠ABE=45°,
    又∵AB=BE,∴∠BAE(180°﹣45°)=67.5°,
    ∴∠DAE=90°﹣67.5°=22.5°;
    ②∵正方形ABCD关于BD对称,
    ∴△ABE≌△CBE,∴∠BAE=∠BCE,
    又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF;
    (2)如图1,过点E作MN⊥BC,垂直为N,交AD于M,
    ∵CE=EF,∴N是CF的中点,
    ∵BC=2BF,∴,
    又∵四边形CDMN是矩形,△DME为等腰直角三角形,
    ∴CN=DM=ME,
    ∴EDDMCN;
    如图2,过点E作MN⊥BC,垂直为N,交AD于M,
    ∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE,
    又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,
    ∴∠BCE=∠EFC,∴CE=EF,∴FN=CN,
    又∵BC=2BF,∴FC=3,∴CN,∴EN=BN,∴DE,
    综上所述:ED的长为或.
    本题考查了正方形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,正确添加辅助线并灵活运用相关知识是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    根据直线方程易求点B、C的坐标,由两点间的距离得到BC的长度.所以根据三角形中位线定理来求EF的长度.
    【详解】
    解:∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,
    ∴B(0,4),C(0,﹣5),
    则BC=1.
    又∵点E,F分别为线段AB、AC的中点,
    ∴EF是△ABC的中位线,
    ∴EF=BC=.
    故答案是:.
    20、x≠2
    【解析】
    根据分式有意义的条件进行求解即可.
    【详解】
    由题意得,2x-4≠0,
    解得:x≠2,
    故答案为:x≠2.
    本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    21、(2,﹣3)
    【解析】
    试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
    解:根据题意,知
    点A与B关于原点对称,
    ∵点A的坐标是(﹣2,3),
    ∴B点的坐标为(2,﹣3).
    故答案是:(2,﹣3).
    点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.
    22、1或
    【解析】
    试题解析:如图(一)所示,
    AB是矩形较短边时,
    ∵矩形ABCD,
    ∴OA=OD=BD;
    ∵OE:ED=1:3,
    ∴可设OE=x,ED=3x,则OD=2x
    ∵AE⊥BD,AE=,
    ∴在Rt△OEA中,x2+()2=(2x)2,
    ∴x=1
    ∴BD=1.
    当AB是矩形较长边时,如图(二)所示,
    ∵OE:ED=1:3,
    ∴设OE=x,则ED=3x,
    ∵OA=OD,
    ∴OA=1x,
    在Rt△AOE中,x2+()2=(1x)2,
    ∴x=,
    ∴BD=8x=8×=.
    综上,BD的长为1或.
    23、(1,1)或(,)或(1,1)
    【解析】
    分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论
    【详解】
    ∵点A的坐标为(1,0),
    ∴OA=1.
    分三种情况考虑,如图所示.
    ①当OP1=AP1时,∵∠AOP1=45°,
    ∴△AOP1为等腰直角三角形.
    又∵OA=1,
    ∴点P1的坐标为(1,1);
    ②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.
    ∵OP1=OA=1,
    ∴OB=BP1=,
    ∴点P1的坐标为(,);
    ③当AO=AP3时,△OAP3为等腰直角三角形.
    ∵OA=1,
    ∴AP3=OA=1,
    ∴点P3的坐标为(1,1).
    综上所述:点P的坐标为(1,1)或(,)或(1,1).
    故答案为:(1,1)或(,)或(1,1).
    本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析
    【解析】
    由题意先证明△ADE≌△BAF,得出∠EDA=∠FAB,再根据∠ADE+∠AED=90°,推得∠FAE+∠AED=90°,从而证出AF⊥DE.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴DA=AB,∠DAE=∠ABF=90°,
    又∵AE=BF,
    ∴△DAE≌△ABF,
    ∴∠ADE=∠BAF,
    ∵∠ADE+∠AED=90°,
    ∴∠FAE+∠AED=90°,
    ∴∠AGE=90°,
    ∴AF⊥DE.
    本题考查正方形的性质;全等三角形的判定与性质.
    25、(1)分;(2)人;(3)80分
    【解析】
    (1)根据算术平均数的定义列式计算可得;
    (2)总人数乘以A、B、C等级所占百分比即可;
    (3)根据中位数的定义求解即可.
    【详解】
    解:(1)一班参赛选手的(分)
    (2)二班成绩在级以上(含级)(人)
    (3)二班、人数占,
    参赛学生共有20人,因此中位数落在C级,
    二班参赛选手成绩的中位数为80分.
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    26、(1)见解析;(2)四边形为正方形,见解析
    【解析】
    (1)先证明得到AF=DB,于是可证;
    (2)先证明四边形是平行四边形,再加一组邻边相等证明它是菱形,最后利用等腰三角形三线合一的性质证明有一个直角,从而证明它是正方形.
    【详解】
    (1)证明:∵是的中点



    又,


    是边上的中线 ,


    (2)解:四边形为正方形,理由如下:
    由(1)得,
    又,
    ∴四边形为平行四边形,
    在中,
    是边上的中线,

    ∴四边形为菱形,
    ,是边上的中线,
    ∴四边形为正方形.
    本题考查了正方形的判定,涉及的知识点有直角三角形斜边中线的性质,全等三角形的判定、平行四边形及菱形、正方形的判定,掌握相关性质定理进行推理论证是解题关键.
    题号





    总分
    得分
    相关试卷

    江苏省靖江市生祠初级中学2024-2025学年九上数学开学检测试题【含答案】: 这是一份江苏省靖江市生祠初级中学2024-2025学年九上数学开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省靖江市生祠初级中学2023-2024学年数学九上期末经典模拟试题含答案: 这是一份江苏省靖江市生祠初级中学2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了反比例函数y=﹣的图象在,下列方程中,是一元二次方程的是等内容,欢迎下载使用。

    2023-2024学年江苏省靖江市生祠初级中学九上数学期末监测模拟试题含答案: 这是一份2023-2024学年江苏省靖江市生祠初级中学九上数学期末监测模拟试题含答案,共8页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map