江苏省江阴市青阳第二中学2025届九年级数学第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在Rt△ABC中,AC=BC=2,将△ABC绕点A逆时针旋转60°,连接BD,则图中阴影部分的面积是( )
A.2﹣2B.2C.﹣1D.4
2、(4分)下列计算错误的是( )
A.﹣=B.÷2=
C.D.3+2=5
3、(4分)在一次数学测试中,某小组的5名同学的成绩(百分制,单位:分)如下:80,98,98,83,96,关于这组数据说法错误的是( )
A.众数是98B.平均数是91
C.中位数是96D.方差是62
4、(4分)下列分式中,无论取何值,分式总有意义的是( )
A.B.C.D.
5、(4分)把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为( )
A.等于4cmB.小于4cm
C.大于4cmD.小于或等于4cm
6、(4分)如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为( )
A.36°B.18°C.27°D.9°
7、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B作于点G,延长BG交AD于点H.在下列结论中:①;②;③ . 其中不正确的结论有( )
A.0个B.1个C.2个D.3个
8、(4分)下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数的图象经过两点,,则这个函数的表达式为__________.
10、(4分)如图,在菱形中,,,点在上,以为对角线的所有中,最小的值是______.
11、(4分)如图,F是△ABC内一点,BF平分∠ABC且AF⊥BF,E是AC中点,AB=6,BC=8,则EF的长等于____.
12、(4分)若ab,则32a__________32b(用“>”、“”或“<”填空).
13、(4分)若是正整数,则整数的最小值为__________________。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形ABCD中,点E、F在边AD上,AF=DE,连接BF、CE.
(1)求证:∠CBF=∠BCE;
(2)若点G、M、N在线段BF、BC、CE上,且 FG=MN=CN.求证:MG=NF;
(3)在(2)的条件下,当∠MNC=2∠BMG时,四边形FGMN是什么图形,证明你的结论.
15、(8分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。
(1)求P与V之间的函数表达式;
(2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
16、(8分)成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用
(1)如果超市在进价的基础上提高5%作为售价,请你计算说明超市是否亏本;
(2)如果该水果的利润率不得低于14%,那么该水果的售价至少为多少元?
17、(10分)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.
求证:四边形ECCD是矩形.
18、(10分)列方程解应用题
今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌. 企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元. 求A、B两厂生产的口罩单价分别是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数中,自变量x的取值范围是___________.
20、(4分)如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km,则两点间的距离为______km.
21、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于 的二元一次方程组的解是_____.
22、(4分)如果一组数据3,4,,6,7的平均数为5,则这组数据的中位数和方差分别是__和__.
23、(4分)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)化简:
(1)
(2)(x﹣)÷
25、(10分)为了了解初中阶段女生身高情况,从某中学初二年级120名女生中随意抽出40名同龄女生的身高数据,经过分组整理后的频数分布表及频数分布直方图如图所示:
结合以上信息,回答问题:
(1)a=______,b=______,c=______.
(2)请你补全频数分布直方图.
(3)试估计该年级女同学中身高在160~165cm的同学约有多少人?
26、(12分)甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:
图中的值是__________;
第_________天时,甲、乙两个车间加工零件总数相同.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由旋转的性质可得AB=AE,∠BAE=60°,AD=AC=2,BC=DE=2,可得△ABE是等边三角形,根据“SSS”可证△ADB≌△EDB,可得S△ADB=S△EDB,由S阴影=(S△ABE-S△ADE)可求阴影部分的面积.
【详解】
解:如图,连接BE,
∵在Rt△ABC中,AC=BC=2,
∴AB2=AC2+BC2=8
∵将△ABC绕点A逆时针旋转60°,
∴AB=AE,∠BAE=60°,AD=AC=2,BC=DE=2,
∴△ABE是等边三角形,
∴AB=BE,S△ABE=AB2=2,
∵AB=BE,AD=DE,DB=DB
∴△ADB≌△EDB(SSS)
∴S△ADB=S△EDB,
∴S阴影=(S△ABE﹣S△ADE)
∴S阴影=
故选C.
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形判定和性质,熟练运用旋转的性质是本题的关键.
2、D
【解析】
利用二次根式加减乘除的运算方法逐一计算得出答案,进一步比较选择即可
【详解】
A. ﹣=,此选项计算正确;
B. ÷2=, 此选项计算正确;
C. ,此选项计算正确;
D. 3+2.此选项不能进行计算,故错误
故选D
此题考查二次根式的混合运算,掌握运算法则是解题关键
3、D
【解析】
根据数据求出众数、平均数、中位数、方差即可判断.
【详解】
A. 98出现2次,故众数是98,正确
B. 平均数是=91,正确;
C. 把数据从小到大排序:80,83,96,98,98,故中位数是96 ,正确
故选D.
此题主要考查统计调查的应用,解题的关键是熟知众数、平均数、中位数、方差的求解.
4、A
【解析】
根据分式有意义的条件是分母不等于零判断.
【详解】
解:A、∵a2≥0,
∴a2+1>0,
∴总有意义;
B、当a=−时,2a+1=0,无意义;
C、当a=±1时,a2−1=0,无意义;
D、当a=0时,无意义;无意义;
故选:A.
本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.
5、D
【解析】
试题分析:本题中如果平移的方向是垂直向上或垂直向下,则平移后的两直线之间的距离为4cm;如果平移的方向不是垂直向上或垂直向下,则平移后的两直线之间的距离小于4cm;故本题选D.
6、B
【解析】
试题解析:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,
又因为DE⊥AC,所以∠DCE=90°-36°=54°,
根据矩形的性质可得∠DOC=180°-2×54°=72°
所以∠BDE=180°-∠DOC-∠DEO=18°
故选B.
7、B
【解析】
先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.
【详解】
∵BD是正方形ABCD的对角线,
∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
∵BE=BC,
∴AB=BE,
∵BG⊥AE,
∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,
在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
∵∠AGH=90°,
∴∠DAE=∠ABH=22.5°,
在△ADE和△CDE中
,
∴△ADE≌△CDE,
∴∠DAE=∠DCE=22.5°,
∴∠ABH=∠DCF,
在Rt△ABH和Rt△DCF中
,
∴Rt△ABH≌Rt△DCF,
∴AH=DF,∠CFD=∠AHB=67.5°,
∵∠CFD=∠EAF+∠AEF,
∴67.5°=22.5°+∠AEF,
∴∠AEF=45°,故①②正确;
如图,连接HE,
∵BH是AE垂直平分线,
∴AG=EG,
∴S△AGH=S△HEG,
∵AH=HE,
∴∠AHG=∠EHG=67.5°,
∴∠DHE=45°,
∵∠ADE=45°,
∴∠DEH=90°,∠DHE=∠HDE=45°,
∴EH=ED,
∴△DEH是等腰直角三角形,
∵EF不垂直DH,
∴FH≠FD,
∴S△EFH≠S△EFD,
∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
故选B.
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.
8、C
【解析】
根据立方根的概念即可求出答案.
【详解】
①2是8的立方根,故①正确;
②4是64的立方根,故②错误;
③是的立方根,故③正确;
④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.
故选C.
本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设一次函数的解析式是:y=kx+b,然后把点,代入得到一个关于k和b的方程组,从而求得k、b的值,进而求得函数解析式.
【详解】
解:设一次函数的解析式是:y=kx+b,
根据题意得:,
解得:,
则一次函数的解析式是:.
故答案是:.
本题考查了待定系数法求函数的解析式,先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.
10、
【解析】
根据题意可得当时,EF的值最小,利用直角三角形的勾股即可解的EF的长.
【详解】
根据题意可得当时,EF的值最小
,AD=AB=
EF=
本题主要考查最短直线问题,关键在于判断当时,EF的值最小.
11、1.
【解析】
根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=4,由EF=DE-DF可得答案.
【详解】
∵AF⊥BF,
∴∠AFB=90°,
∵AB=6,D为AB中点,
∴DF=AB=AD=BD=3,
∴∠ABF=∠BFD,
又∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠CBF=∠DFB,
∴DE∥BC,
∴△ADE∽△ABC,
∴,即
解得:DE=4,
∴EF=DE-DF=1,
故答案为:1.
本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.
12、
【解析】
根据不等式的性质进行判断即可
【详解】
解:∵ab,
∴2a2b
∴32a32b
故答案为:<
本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
13、1.
【解析】
是正整数,则1n一定是一个完全平方数,即可求出n的最小值.
【详解】
解:∵是正整数,
∴1n一定是一个完全平方数,
∴整数n的最小值为1.
故答案是:1.
本题考查了二次根式的定义,理解是正整数的条件是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析;(3)四边形FGMN是矩形,见解析
【解析】
(1)由“SAS”可证△ABF≌△DCE,可得∠ABF=∠DCE,可得结论;
(2)通过证明四边形FGMN是平行四边形,可得MG=NF;
(3)过点N作NH⊥MC于点H,由等腰三角形的性质可证∠BMG=∠MNH,可证∠GMN=90°,即可得四边形FGMN是矩形.
【详解】
证明:(1)∵四边形ABCD是矩形
∴AB=CD,∠A=∠D=90°,且AF=DE
∴△ABF≌△DCE(SAS)
∴∠ABF=∠DCE,且∠ABC=∠DCB=90°
∴∠FBC=∠ECB
(2)∵FG=MN=CN
∴∠NMC=∠NCM
∴∠NMC=∠FBC
∴MN∥BF,且FG=MN
∴四边形FGMN是平行四边形
∴MG=NF
(3)四边形FGMN是矩形
理由如下:
如图,过点N作NH⊥MC于点H,
∵MN=NC,NH⊥MC
∴∠MNH=∠CNH=∠MNC,NH⊥MC
∴∠MNH+∠NMH=90°
∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC
∴∠BMG=∠MNH,
∴∠BMG+∠NMH=90°
∴∠GMN=90°
∴四边形FGMN是矩形
本题考查了矩形的性质和判定,全等三角形的判定和性质,平行四边形的判定,证明∠BMG=∠MNH是本题的关键.
15、(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
【解析】
(1)设气球内气体的气压P(kPa)和气体体积V(m3)的反比例函数为,将V=0.8时,P=120,代入求出F,再将F的值代入,可得P与V之间的函数表达式。
(2)为确保气球不爆炸,则 时,即,解出不等式解集即可。
【详解】
解:(1)设P与V之间的函数表达式为
当V=0.8时,P=120,
所以
∴F=96
∴P与V之间的函数表达式为
(2)当 时,
∴
∴为确保气球不爆炸,气球的体积应不小于0.96
答(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
16、(1)如果超市在进价的基础上提高5%作为售价,则亏本1元;(2)该水果的售价至少为2.1元/千克.
【解析】
(1)根据利润=销售收入-成本,即可求出结论;
(2)根据利润=销售收入-成本结合该水果的利润率不得低于11%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
(1)2×(1+5%)×200×(1﹣5%)﹣100=﹣1(元).
答:如果超市在进价的基础上提高5%作为售价,则亏本1元.
(2)设该水果的售价为x元/千克,
根据题意得:200×(1﹣5%)x﹣200×2≥200×2×11%,
解得:x≥2.1.
答:该水果的售价至少为2.1元/千克.
本题考查了一元一次不等式的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据各数量间的关系,正确列出一元一次不等式.
17、见解析
【解析】
首先利用中位线定理证得CG∥BD,CG=BD,然后根据四边形ABCD是菱形得到AC⊥BD,DE=BD,从而得到∠DEC=90°,CG=DE,即可得到四边形ECGD是矩形.
【详解】
证明:∵CF=BC,
∴C点是BF中点,
∵点G是DF中点,
∴CG是△DBF中位线,
∴CG∥BD,CG=BD,
∵四边形ABCD是菱形,
∴AC⊥BD,DE=BD,
∴∠DEC=90°,CG=DE,
∴四边形ECGD是矩形.
本题考查了矩形的判定、菱形的性质及三角形的中位线定理,解题的关键是牢记矩形的判定方法,难度不大.
18、A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.
【解析】
设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,根据数量=总价÷单价结合在B厂订购的口罩数量是A厂的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:设B厂生产的口罩单价为x元,则A厂生产的口罩单价为(x+0.2)元,
依题意得:,
解得:x=2,
经检验,x=2是原方程的解,且符合题意,
∴x+0.2=2.2,
答:A厂生产的口罩单价为2.2元,B厂生产的口罩单价为2元.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且.
【解析】
根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.
【详解】
根据二次根式的性质以及分式的意义可得:,且,
∴且,
故答案为:且.
本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.
20、1.1
【解析】
根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km.
【详解】
∵在Rt△ABC中,∠ACB=90°,M为AB的中点,
∴MC=AB=AM=1.1(km).
故答案为:1.1.
此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.
21、x=1,y=1
【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
解:函数y=ax+b和y=kx的图象交于点P(1,1)
即x=1,y=1同时满足两个一次函数的解析式.
所以,方程组的解是 ,
故答案为x=1,y=1.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
22、5; 1.
【解析】
首先根据其平均数为5求得的值,然后再根据中位数及方差的计算方法计算即可.
【详解】
解:数据3,4,,6,7的平均数是5,
解得:,
中位数为5,
方差为.
故答案为:5;1.
本题考查了平均数、中位数及方差的定义与求法,熟练掌握各自的求法是解题关键.
23、-1
【解析】
另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.
【详解】
设另一个根为t,
根据题意得4+t=3,
解得t=-1,
即另一个根为-1.
故答案为-1.
此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=− .
二、解答题(本大题共3个小题,共30分)
24、 (1);(2) x2+x.
【解析】
(1)根据分式的性质,结合完全平方公式和平方差公式化简即可;
(2)根据分式的性质,结合完全平方公式和平方差公式化简即可.
【详解】
解:(1)
=
=
= ;
(2)
=
=x(x+1)
=x2+x.
本题主要考查分式的化简,结合考查完全平方公式和平方差公式,应当熟练掌握.
25、(1)6,12 ,0.30;(2)见解析;(3)36
【解析】
(1)根据频率分布表中的各个数据之间的关系,或者,调查总人数乘以本组的所占比可以求出a;从40人中减去其它各组人数即可,12占40 的比就是C,
(2)根据缺少的两组的数据画出直方图中对应直条,
(3)用样本估计总体,根据该年级的总人数乘以身高在160~165cm的同学所占比.
【详解】
解:(1)6 12 0.30
40×0.15=6人,a=6,
b=40-6-2-14-6=12,
12÷40=0.30,即c=0.30,
答:a=6,b=12,c=0.30,
(2)补全频率分布直方图如图所示:
(3)120×0.30=36人,
答:该年级女同学中身高在160~165cm的同学约有36人.
本题考查频率分布直方图和频率分布表所反映数据的变化趋势,理解表格中各个数据之间的关系是解决问题的关键.
26、770 1
【解析】
(1)根据题意和函数图象中的数据可以求得m的值;
(2)根据题意和函数图象中的数据可以求得甲的速度、乙引入设备前后的速度,乙停工的天数,从而可以求得第几天,甲、乙两个车间加工零件总数相同.
【详解】
解:(1)由题意可得,
m=720+50=770,
故答案为:770;
(2)由图可得,
甲每天加工的零件数为:720÷9=10(个),
乙引入新设备前,每天加工的零件数为:10-(40÷2)=60(个),
乙停工的天数为:(200-40)÷10=2(天),
乙引入新设备后,每天加工的零件数为:(770-60×2)÷(9-2-2)=130(个),
设第x天,甲、乙两个车间加工零件总数相同,
10x=60×2+130(x-2-2),
解得,x=1,
即第1天,甲、乙两个车间加工零件总数相同,
故答案为:1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
江苏省江阴市青阳片2025届九上数学开学复习检测试题【含答案】: 这是一份江苏省江阴市青阳片2025届九上数学开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省江阴市南菁教育集团暨阳校区数学九年级第一学期开学预测试题【含答案】: 这是一份2024年江苏省江阴市南菁教育集团暨阳校区数学九年级第一学期开学预测试题【含答案】,共21页。试卷主要包含了选择题,四象限,则k的取值可能是,解答题等内容,欢迎下载使用。
2024-2025学年江苏省无锡市江阴市青阳第二中学九年级数学第一学期开学复习检测试题【含答案】: 这是一份2024-2025学年江苏省无锡市江阴市青阳第二中学九年级数学第一学期开学复习检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。