江苏省东台市第二教育联盟2025届九年级数学第一学期开学监测试题【含答案】
展开
这是一份江苏省东台市第二教育联盟2025届九年级数学第一学期开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题为真命题的是( )
A.若ab>0,则a>0,b>0
B.两个锐角分别相等的两个直角三角形全等
C.在一个角的内部,到角的两边距离相等的点在这个角的平分线上
D.一组对边平行,另一组对边相等的四边形是平行四边形
2、(4分)下列各点中,在反比例函数图象上的点是
A.B.C.D.
3、(4分)菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为( )
A.52B.48C.40D.20
4、(4分)点到轴的距离为( )
A.3B.4C.5D.
5、(4分)某组数据方差的计算公式是中,则该组数据的总和为
A.32B.8C.4D.2
6、(4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A.15°B.30°C.45°D.60°
7、(4分)判断由线段 a,b,c 能组成直角三角形的是( )
A.a=32,b=42,c=52
B.a= ,b= ,c=
C.a= ,b= ,c=
D.a=3-1,b=4-1,c=5-1
8、(4分)如图,在矩形中,,,点是边上一点,将沿折叠,使点落在点处.连结,当为直角三角形时,的长是( )
A.B.C.或D.或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)▱ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_____cm.
10、(4分)不等式5﹣2x>﹣3的解集是_____.
11、(4分)一次函数与轴的交点坐标为__________.
12、(4分)如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y 的图象上,则 k 的值为________.
13、(4分)已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为______________㎝2
三、解答题(本大题共5个小题,共48分)
14、(12分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个;
(2)求出甲厂的印刷费y甲与证书数量x的函数关系式,并求出其证书印刷单价;
(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.
15、(8分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.
(1)求第一批每支钢笔的进价是多少元?
(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?
16、(8分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?
17、(10分) (1)化简:.
(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.
18、(10分)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东方向航行,请求出“海天”号的航行方向?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一个函数的图象与反比例函数的图象关于轴对称,则这个函数的表达式是__________.
20、(4分)已知直线过点和点,那么关于的方程的解是________.
21、(4分)点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.
22、(4分)当x______时,在实数范围内有意义.
23、(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数,当时,,求它的解析式以及该直线与坐标轴的交点坐标.
25、(10分)如图①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.
(1)请你判断并写出FE与FD之间的数量关系(不需证明);
(2)如图②,如果∠ACB不是直角,其他条件不变,那么在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
26、(12分)如图,中,.
(1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)
(2)在(1)的条件下,求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用不等式的性质、三角形全等的判定、角平分线的性质及平行四边形的判定分别判断后即可确定正确的选项.
【详解】
A、若ab>0,则a、b同号,错误,是假命题;
B、两个锐角分别相等的两个直角三角形不一定全等,错误,是假命题;
C、在一个角的内部,到角的两边距离相等的点在这个角的平分线上,正确,是真命题;
D、一组对边平行,另一组对边相等的四边形可以是等腰梯形,错误,是假命题;
故选:C.
考查了命题与定理的知识,解题的关键是了解不等式的性质、三角形全等的判定、角平分线的性质及平行四边形的判定等知识,难度不大.
2、B
【解析】
把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.
【详解】
只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.
故选B
本题考核知识点:反比例函数的意义. 解题关键点:理解反比例函数的意义.
3、A
【解析】
由勾股定理可得AB的长,继而得到菱形ABCD的周长.
【详解】
因为菱形ABCD中,AC=10,BD=24,所以OB=12,OA=5.在直角三角形ABO中,AB=,所以菱形ABCD的周长=4AB=52,故答案为A.
本题考查勾股定理和菱形的性质,解题的关键是掌握勾股定理和菱形的性质.
4、A
【解析】
根据点到y轴的距离是点的横坐标的绝对值,可得答案.
【详解】
解:点的坐标(3,-4),它到y轴的距离为|3|=3,
故选:A.
本题考查了点的坐标,点到y轴的距离是点的横坐标的绝对值,点到x轴的距离是点的纵坐标的绝对值.
5、A
【解析】
样本方差,其中n是这个样本的容量,是样本的平均数利用此公式直接求解.
【详解】
由知共有8个数据,这8个数据的平均数为4,
则该组数据的综合为,
故选:A.
本题主要考查方差,解题的关键是掌握方差的计算公式及公式中的字母所表示的意义.
6、A
【解析】
先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.
【详解】
∵等边三角形ABC中,AD⊥BC,
∴BD=CD,即:AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
∴∠EBC=∠ECB,
∵∠EBC=45°,
∴∠ECB=45°,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACE=∠ACB-∠ECB=15°,
故选A.
此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.
7、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A. ,故不是直角三角形,故本选项错误;
B.故是直角三角形,故本选项正确;
C. ,故不是直角三角形,故本选项错误;
D. a=3-1=2,b=4-1=3,c=5-1=4, 由于,故不是直角三角形,故本选项错误.
故选:B
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
8、D
【解析】
当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AFE=∠B=90°,而当△CEF为直角三角形时,只能得到∠EFC=90°,所以点 A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,则EB=EF,AB=AF=1,可计算出CF=4,设BE=x,则EF=x,CE=8-x,然后在Rt△CEF中运用勾股定理可计算出x.②当点F落在AD边上时,如图2所示.此时四边形ABEF为正方形.
【详解】
解:当△CEF为直角三角形时,有两种情况:
①当点F落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=8,
∴AC==10,
∵∠B沿AE折叠,使点B落在点F处,
∴∠AFE=∠B=90°,
当△CEF为直角三角形时,只能得到∠EFC=90°,
∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,
∴EB=EF,AB=AF=1,
∴CF=10-1=4,
设BE=x,则EF=x,CE=8-x,
在Rt△CEF中,
∵EF2+CF2=CE2,
∴x2+42=(8-x)2,
解得x=3,
∴BE=3;
②当点F落在AD边上时,如图2所示.
此时ABEF为正方形,
∴BE=AB=1.
综上所述,BE的长为3或1.
故选D.
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
首先根据平行四边形基本性质,AE⊥BD,∠EAD=60°,可得∠ADE=30°,然后再根据直角三角形的性质可得AD=2AE=4cm,再根据四边形ABCD是平行四边形可得AO=CO,BO=DO,BC=AD=4cm,进而求出BO+CO的长,然后可得△OBC的周长.
【详解】
∵AE⊥BD,∠EAD=60°,
∴∠ADE=30°,
∴AD=2AE=4cm,
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,BC=AD=4cm,
∵AC+BD=14cm,
∴BO+CO=7cm,
∴△OBC的周长为:7+4=1(cm),
故答案为1
本题考查平行四边形的基本性质,解题关键在于根据直角三角形的性质得出AD=2AE=4cm
10、x<1
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
解:﹣2x>﹣3﹣5,
﹣2x>﹣8,
x<1,
故答案为x<1.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
11、
【解析】
令y=0,即可求出交点坐标.
【详解】
令y=0,得x=1,
故一次函数与x轴的交点为
故填
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
12、−3
【解析】
设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.
【详解】
设A(a,b),
∴OE=a,AE=b,
∵在反比例函数y=图象上,
∴ab=,
分别过A,C作AE⊥x轴于E,CF⊥x轴于F,
∵矩形AOCB,
∴∠AOE+∠COF=90°,
∴∠OAE=∠COF=90°−∠AOE,
∴△AOE∽△OCF,
∵OC=OA,
∴===,
∴OF=AE=b,CF=OE=a,
∵C在反比例函数y=的图象上,且点C在第四象限,
∴k=−OF⋅CF=−b⋅a=−3ab=−3.
本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.
13、14
【解析】
根据菱形的面积等于两对角线乘积的一半求得其面积即可.
【详解】
由已知得,菱形的面积等于两对角线乘积的一半
即:6×8÷1=14cm1.
故答案为:14.
此题主要考查菱形的面积等于两条对角线的积的一半.
三、解答题(本大题共5个小题,共48分)
14、(1)1;1.5(2)y=0.5x+1(3)选择乙厂节省费用,节省费用500元.
【解析】
(1)根据纵轴图象判断即可,用2到6千个时的费用除以证件个数计算即可得解;
(2)设甲厂的印刷费y甲与证书数量x的函数关系式为y=kx+b,利用待定系数法解答即可;
(3)用待定系数法求出乙厂x>2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解.
【详解】
解:(1)(1)由图可知,甲厂的制版费为1千元; 当x≤2(千个)时,乙厂证书印刷单价是3÷2=1.5元/个;
故答案为1;1.5;
(2)解:设甲厂的印刷费y甲与证书数量x的函数关系式为y=kx+b,
可得: ,解得: ,
所以甲厂的印刷费y甲与证书数量x的函数关系式为:y=0.5x+1;
(3)解:设乙厂x>2时的函数解析式为y=k2x+b2 ,
则 ,解得 ,
∴y=0.25x+2.5,
x=8时,y=0.25×8+2.5=4.5千元,
甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元,
印制8千个的费用为0.5×8+1=4+1=5千元,
5﹣4.5=0.5千元=500元,
所以,选择乙厂节省费用,节省费用500元.
本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.
15、(1)15元;(2)1支.
【解析】
试题分析:(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;
(2)设销售y只后开始打折,根据第二批文具盒的利润率不低于20%,列出不等式,再求解即可.
试题解析:解:(1)设第一批每只文具盒的进价是x元,根据题意得:
﹣=10
解得:x=15,经检验,x=15是方程的解.
答:第一批文具盒的进价是15元/只.
(2)设销售y只后开始打折,根据题意得:
(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥141×20%,解得:y≥1.
答:至少销售1只后开始打折.
点睛:本题考查了列分式方程和一元一次不等式的应用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.
16、7200元
【解析】
仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.
【详解】
连接BD,
在Rt△ABD中,BD2=AB2+AD2=32+42=52,
在△CBD中,CD2=132,BC2=122,
而122+52=132,
即BC2+BD2=CD2,
∴∠DBC=90°,
S四边形ABCD=S△BAD+S△DBC=⋅AD⋅AB+DB⋅BC=×4×3+×12×5=36.
所以需费用36×200=7200(元).
此题考查勾股定理的应用,解题关键在于作辅助线和利用勾股定理进行计算.
17、 (1)x+1;(2)-2.
【解析】
(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;
(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.
【详解】
(1)原式=
=x+1;
(2)解不等式“”得,
∴其负整数解是-3、-2、-1.
∴当时,原式=-3+1=-2
分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.
18、 “海天”号的航行方向是沿北偏西方向航行
【解析】
直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案.
【详解】
由题意可得:RP=18海里,PQ=24海里,QR=30海里,
∵182+242=302,
∴△RPQ是直角三角形,
∴∠RPQ=90°,
∵“远航”号沿北偏东60°方向航行,
∴∠RPN=30°,
∴“海天”号沿北偏西30°方向航行.
此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
直接根据平面直角坐标系中,关于y轴对称的特点得出答案.
【详解】
解:∵反比例函数的图象关于y轴对称的函数x互为相反数,y不变,
∴,
故答案为:.
本题考查反比例函数与几何变换,掌握关于y轴对称时,y不变,x互为相反数是解题关键.
20、
【解析】
观察即可知关于的方程的解是函数中y=0时x的值.
【详解】
解:∵直线过点
∴当y=0时x=-3
即的解为x=-3
故答案为:
本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
21、1.
【解析】
根据关于x轴对称的点的横坐标相同,纵坐标互为相反数可得a、b的值,继而可求得答案.
【详解】
∵点A(a,-5)和点B(3,b)关于x轴对称,
∴a=3,b=5,
∴ab=1,
故答案为:1.
本题考查了关于x轴对称的点的坐标特征,熟练掌握是解题的关键.
22、x≥-1且x≠1.
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.
【详解】
解:根据二次根式的意义,被开方数x+1≥0,解得x≥-1;
根据分式有意义的条件,x-1≠0,解得x≠1,
所以,x取值范围是x≥-1且x≠1
故答案为:x≥-1且x≠1.
本题考查二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数必须是非负数、分式分母不为0是解题的关键.
23、1
【解析】
先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.
【详解】
解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,
∴持“赞成”意见的学生人数=100-30=70名,
∴全校持“赞成”意见的学生人数约=2400×=1(名).
故答案为:1.
本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、该直线与x轴交点的坐标是(1,0),与y轴的交点坐标是(0,-1).
【解析】
把x、y的值代入y=kx-1,通过解方程求出k的值得到一次函数的解析式,根据直线与x轴相交时,函数的y值为0,与y轴相交时,函数的x值为0求出该直线与坐标轴的交点坐标.
【详解】
解:∵一次函数y=kx-1,当x=2时,y=-2,
∴-2=2k-1,解得k=1,
∴一次函数的解析式为y=x-1.
∵当y=0时,x=1;
当x=0时,y=-1,
∴该直线与x轴交点的坐标是(1,0),与y轴的交点坐标是(0,-1).
本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.正确求出直线的解析式是解题的关键.
25、(1)FE=FD (2)答案见解析
【解析】
(1)先在AC上截取AG=AE,连结FG,利用SAS判定△AEF≌△AGF,得出∠AFE=∠AFG,FE=FG,再利用ASA判定△CFG≌△CFD,得到FG=FD,进而得出FE=FD;
(2)先过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,根据已知条件得到∠GEF=∠HDF,进而判定△EGF≌△DHF(AAS),即可得出FE=FD.也可以过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,再判定△EFG≌△DFH(ASA),进而得出FE=FD.
【详解】
(1)FE与FD之间的数量关系为:FE=FD.
理由:如图,在AC上截取AG=AE,连结FG,
∵AD是∠BAC的平分线,
∴∠1=∠2,
在△AEF与△AGF中
,
∴△AEF≌△AGF(SAS),
∴∠AFE=∠AFG,FE=FG,
∵∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,
∴2∠2+2∠3+∠B=180°,
∴∠2+∠3=60°,
又∵∠AFE为△AFC的外角,
∴∠AFE=∠CFD=∠AFG=∠2+∠3=60°,
∴∠CFG=180°-60°-60°=60°,
∴∠GFC=∠DFC,
在△CFG与△CFD中,
,
∴△CFG≌△CFD(ASA),
∴FG=FD,
∴FE=FD;
(2)结论FE=FD仍然成立.
如图,过点F分别作FG⊥AB于点G,FH⊥BC于点H,则∠FGE=∠FHD=90°,
∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,
∴∠2+∠3=60°,F是△ABC的内心,
∴∠GEF=∠BAC+∠3=∠1+∠2+∠3=60°+∠1,
∵F是△ABC的内心,即F在∠ABC的角平分线上,
∴FG=FH,
又∵∠HDF=∠B+∠1=60°+∠1,
∴∠GEF=∠HDF,
在△EGF与△DHF中,
,
∴△EGF≌△DHF(AAS),
∴FE=FD.
本题属于三角形综合题,主要考查了全等三角形的判定与性质,三角形外角性质,角平分线的性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.
26、(1)见解析;(2)见解析.
【解析】
(1)作出∠ABC的角平分线BM交线段AC于P,利用角平分线上的点到角的两边的距离相等可知点P即为所求;
(2)过点P作PN⊥BC,交BC于点N,通过证明≌得到AB=BN,且易得PN=NC,由BC=BN+NC,等线段转化即可得证.
【详解】
解:(1)如图:利用尺规作图,作出∠ABC的角平分线BM交线段AC于P,则点到边的距离等于的长;
(2)如图,过点P作PN⊥BC,交BC于点N,由(1)可知:PA=PN,
在和中,
,
∴≌(HL),
∴AB=BN,
∵,
∴∠C=45°,
又∵∠PNC=90°
∴∠NPC=∠C=45°,
∴PN=NC,
∴BC=BN+NC=AB+PN=AB+AP.
本题主要考查了利用尺规作图作一个角的角平分线,角平分线的性质及直角三角形全等的判定.熟练掌握角平分线的性质是解决本题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份江苏省东台市第三教育联盟2025届数学九年级第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省东台市第六教育联盟2025届数学九上开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省东台市第六教育联盟2025届九上数学开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。