终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省常州市金坛区2024-2025学年数学九上开学教学质量检测试题【含答案】

    立即下载
    加入资料篮
    江苏省常州市金坛区2024-2025学年数学九上开学教学质量检测试题【含答案】第1页
    江苏省常州市金坛区2024-2025学年数学九上开学教学质量检测试题【含答案】第2页
    江苏省常州市金坛区2024-2025学年数学九上开学教学质量检测试题【含答案】第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省常州市金坛区2024-2025学年数学九上开学教学质量检测试题【含答案】

    展开

    这是一份江苏省常州市金坛区2024-2025学年数学九上开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是( )
    A.B.
    C.D.
    2、(4分)下列命题中是真命题的是( )
    A.若a>b,则3﹣a>3﹣b
    B.如果ab=0,那么a=0,b=0
    C.一组对边相等,另一组对边平行的四边形是平行四边形
    D.有两个角为60°的三角形是等边三角形
    3、(4分)如图,在平行四边形ABCD中,BD为对角线,点E、O、F分别是 AB、BD、BC的中点,且,,则平行四边形ABCD的周长为
    A.10B.12C.15D.20
    4、(4分)若代数式在实数范围内有意义,则的取值范围是
    A.x1D.x≥1
    5、(4分)如图,在中,对角线与相交于点,是边的中点,连接,若,,则( )
    A.80°B.90°C.100°D.110°
    6、(4分)下列计算正确的是( )
    A.B.C.D.
    7、(4分)点向右平移2个单位得到对应点,则点的坐标是( )
    A.B.C.D.
    8、(4分)如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做( )
    A.代入法B.换元法C.数形结合D.分类讨论
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.
    10、(4分)若n边形的每个内角都是,则________.
    11、(4分)如图,在中,直径,弦于,若,则____
    12、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“
    【解析】
    根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
    【详解】
    在反比例函数y=中,k=1>0,
    ∴该函数在x<0内y随x的增大而减小.
    ∵x1<x1<0,
    ∴y1>y1.
    故答案为:>.
    本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
    13、六边形.
    【解析】依据多边形的内角和公式列方程求解即可.
    解:180(n﹣2)=120°n
    解得:n=1.
    故答案为:六边形.
    三、解答题(本大题共5个小题,共48分)
    14、这种洗衣液每袋原价是9元.
    【解析】
    设这种洗衣液每袋原价是x元,则现价为(x-3)元,根据数量=总价÷单价结合降价后24元钱购买的洗衣液袋数等于降价前36元购买的洗衣液袋数,即可得出关于x的分式方程,解之经检验后即可得出结论.
    【详解】
    解:设这种洗衣液每袋原价是元,则现价为元,
    依题意,得:,
    解得:,
    经检验,是原分式方程的解,且符合题意.
    答:这种洗衣液每袋原价是9元.
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    15、(1);(2)平行四边形的周长是.
    【解析】
    (1)根据∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分线定义转化为∠ABC与∠DCB和的一半即可;
    (2)根据角平分线和平行线得到AE=AB,DE=DC,由此可得平行四边形ABCD周长=6AB.
    【详解】
    解:(1) ∵四边形是平行四边形

    又∵平分和
    .
    ∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;
    (2)在中,.


    ,同理:
    ∵平行四边形中,,
    ∴平行四边形的周长是.
    本题主要考查了平行四边形的性质、勾股定理,解题的关键是通过角平分线和平行线转化线段.
    16、(1)作图见解析;(2)证明见解析;
    【解析】
    (1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;
    (2)利用垂直平分线证得△DEO≌△BFO即可证得结论.
    【详解】
    解:(1)如图:
    (2)∵四边形ABCD为矩形,
    ∴AD∥BC,
    ∴∠ADB=∠CBD,
    ∵EF垂直平分线段BD,
    ∴BO=DO,
    在△DEO和三角形BFO中,

    ∴△DEO≌△BFO(ASA),
    ∴DE=BF.
    考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.
    17、(1)m=75-2.5x;(2)y=-1900x+75000(0≤x≤30);(3)生产甲产品25吨时,公司获得的总利润最大,最大利润是27500元.
    【解析】
    (1)∵生产甲产品x吨,则用矿石原料10x吨.∴生产乙产品用矿石原料为(300-10x)吨,由此得出;
    (2)先求出生产1吨甲、乙两种产品各获利多少,然后可求出获得的总利润.
    (3)由于总利润y是x的一次函数,先求出x的取值范围,再根据一次函数的增减性,求得最大利润.
    【详解】
    (1)m与x之间的关系式为
    (2)生产1吨甲产品获利:4600-4000=600
    生产1吨乙产品获利:5500-4500=1000
    y与x的函数表达式为:(0≤x≤30)
    (3)根据题意列出不等式
    解得x≥25
    又∵0≤x≤30
    ∴25≤x≤30
    ∵y与x的函数表达式为:y=-1900x+75000
    y随x的增大而减小,
    ∴当生产甲产品25吨时,公司获得的总利润最大
    y最大=-1900×25+75000=27500(元).
    本题考查的知识点是用函数的知识解决实际问题,解题关键是注意自变量的取值范围还必须使实际问题有意义.
    18、(1);(2)8.
    【解析】
    (1)根据二次根式的乘除法和加减法可以解答本题;
    (2)根据、的值即可求得所求式子的值.
    【详解】
    (1)解:原式

    (2)解:原式
    .
    本题考查了二次根式的化简求值,分母有理化,解答本题的关键是明确二次根式化简求值的方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据题意得到的取值范围是,则通过解关于的方程求得的值,由的取值范围来求的取值范围.
    【详解】
    解:直线与轴的交点在、之间(包括、两点),

    令,则,
    解得,
    则,
    解得.
    故答案是:.
    本题考查了一次函数图象与系数的关系.根据一次函数解析式与一元一次方程的关系解得的值是解题的突破口.
    20、1
    【解析】
    解:∵∴
    ∴或.∵,∴

    故答案为:1.
    21、1.
    【解析】
    根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
    【详解】
    ∵菱形ABCD的顶点C(-1,0),点B(0,2),
    ∴点A的坐标为(-1,4),点D坐标为(-2,2),
    ∵D(n,2),
    ∴n=-2,
    当y=4时,-x+5=4,
    解得x=2,
    ∴点A向右移动2+1=3时,点A在MN上,
    ∴m的值为3,
    ∴m+n=1,
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
    22、y=-1x+1
    【解析】
    根据一次函数图象平移的性质即可得出结论.
    【详解】
    解:正比例函数y=-1x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-1x+1.
    故答案为:y=-1x+1.
    本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    23、1
    【解析】
    根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.
    【详解】
    解:由题意得:110(n-2)=360×3,
    解得:n=1,
    故答案为:1.
    此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
    二、解答题(本大题共3个小题,共30分)
    24、(1)0.73,2.25;(2)2,10;(3)1.
    【解析】
    (1)根据极差、平均数的定义求解;
    (2)对照表格得到10名男生立定跳远得分,然后根据中位线、众数的概念解答;
    (3)用样本根据总体.
    【详解】
    解:(1)10名男生“立定跳远”成绩的极差是:2.60-1.87=0.73(米)
    10名男生“立定跳远”成绩的平均数是:
    (1.26+2.38+2.56+2.04+2.34+2.17+2.60+2.26+1.87+2.32)=2.25(米);
    (2)抽查的10名男生的立定跳远得分依次是:
    7,10,10,8,10,8,10,2,6,2.
    ∴10名男生立定跳远得分的中位数是2分,众数是10分;
    (3)∵抽查的10名男生中得分2分(含2分)以上有6人,
    ∴有480×=1;
    ∴估计该校480名男生中得到优秀的人数是1人.
    本题考查了极差,平均数,中位线,众数的概念,极差是一组数据中最大的数与最小的数的差.众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.
    25、(1)13,13;(2)这个班级平均每天的用电量为12度;(3)估计该校该月总的用电量为7200度.
    【解析】
    (1)根据众数和中位数的定义进行求解;
    (2)由加权平均数公式求之即可;
    (3)用每班用电量的平均数×总班数×总天数求解.
    【详解】
    解:(1)用电量为13度的天数有3天,天数最多,所以众数是13度;将用电量从小到大排列,处在中间位置的用电量分别为13度,13度,所以中位数是13度.
    (2)(度).
    答:这个班级平均每天的用电量为12度.
    (3)(度).
    答:估计该校该月总的用电量为7200度.
    此题考查的是统计表的综合运用.读懂统计表,从统计表中得到必要的信息是解决问题的关键.本题还考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.
    26、(1)年平均增长率为10% ;(2).
    【解析】
    设萧山区从2015——2017年年游客接待量的年平均增长率为x,根据这三年累计接待游客高达5958万人次即可得出关于x的一元二次方程,解出取其正值即可得出结论;
    (2)运用(1)的结论进行预测即可.
    【详解】
    (1)解:设年平均增长率为x得:
    由题意得:x>0,∴(舍去)即年平均增长率为10%
    (2)
    ∴若继续呈该趋势增长,预测2018年年游客接待量约为2396万人次.
    本题考查了一元二次方程的应用,解题珠关键是找准等量关系,正确列出一元二次方程.
    题号





    总分
    得分
    批阅人
    产品资源


    矿石(吨)
    10
    4
    煤(吨)
    4
    8
    成绩(米)

    1.80~1.86
    1.86~1.94
    1.94~2.02
    2.02~2.18
    2.18~2.34
    2.34~
    得分(分)

    5
    6
    7
    8
    9
    10
    用电量/度
    8
    9
    10
    13
    14
    15
    天数
    1
    1
    2
    3
    1
    2

    相关试卷

    江苏省常州市武进区礼嘉中学2024-2025学年九上数学开学达标检测模拟试题【含答案】:

    这是一份江苏省常州市武进区礼嘉中学2024-2025学年九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,四象限,则的值是,解答题等内容,欢迎下载使用。

    江苏省常州市金坛区七校2024年九年级数学第一学期开学检测试题【含答案】:

    这是一份江苏省常州市金坛区七校2024年九年级数学第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省金坛市数学九上开学考试模拟试题【含答案】:

    这是一份2024-2025学年江苏省金坛市数学九上开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map