年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届江苏省常州市金坛区水北中学九年级数学第一学期开学综合测试试题【含答案】

    2025届江苏省常州市金坛区水北中学九年级数学第一学期开学综合测试试题【含答案】第1页
    2025届江苏省常州市金坛区水北中学九年级数学第一学期开学综合测试试题【含答案】第2页
    2025届江苏省常州市金坛区水北中学九年级数学第一学期开学综合测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省常州市金坛区水北中学九年级数学第一学期开学综合测试试题【含答案】

    展开

    这是一份2025届江苏省常州市金坛区水北中学九年级数学第一学期开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为( )
    A.B.C.D.
    2、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()
    A.3B.4C.5D.6
    3、(4分)如图,在平行四边形ABCD中,点E在边DC上,联结AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是( )
    A.FC:FB=1:3B.CE:CD=1:3C.CE:AB=1:4D.AE:AF=1:1.
    4、(4分)如图,在平行四边形ABCD中,下列结论中错误的是( )
    A.∠1=∠2B.AB⊥ACC.AB=CDD.∠BAD+∠ABC=180°
    5、(4分)关于函数,下列结论正确的是
    A.图象必经过点B.y随x的增大而减小
    C.图象经过第一、二、四象限D.以上都不对
    6、(4分)若,,,是直线上的两点,当时,有,则的取值范围是
    A.B.C.D.
    7、(4分)若关于的一元二次方程有两个不相等的实数根,则一次函数
    的图象可能是:
    A.B.C.D.
    8、(4分)如图,在△ABC中,∠ACB=90°,分别以AB、BC、AC为底边在△ABC外部画等腰直角三角形,三个等腰直角三角形的面积分别是S1、S2、S3,则S1、S2、S3之间的关系是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,.对角线AC与BD相交于点O,,则BD 的长为____________.
    10、(4分)函数中,若自变量的取值范围是,则函数值的取值范围为__________.
    11、(4分)在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为______用含n的代数式表示,n为正整数.
    12、(4分)化简:______.
    13、(4分)两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组教据合并为一组,用这组新数据的中位为_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
    (1)求证:四边形BFCE是平行四边形;
    (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
    15、(8分)如图,矩形的面积为20cm2,对角线交于点,以AB、AO为邻边作平行四边形,对角线交于点;以为邻边作平行四边形;…;依此类推,则平行四边形的面积为______,平行四边形的面积为______.
    16、(8分)如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=4,则当四边形DEFG为菱形时,点G的坐标为_____.
    17、(10分)分解因式:
    (1);
    (2)。
    18、(10分)如图,在△ABC中,CE平分∠ACB交AB于E点,DE∥BC,DF∥AB.
    (1)若∠BCE=25°,请求出∠ADE的度数;
    (2)已知:BF=2BE,DF交CE于P点,连结BP,AB⊥BP.
    ①猜想:△CDF的边DF与CD的数量关系,并说明理由;
    ②取DE的中点N,连结NP.求证:∠ENP=3∠DPN.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)以1,1,为边长的三角形是___________三角形.
    20、(4分)若反比例函数y=的图象经过A(﹣2,1)、B(1,m)两点,则m=________.
    21、(4分)为了解一批节能灯的使用寿命,宜采用__________的方式进行调查.(填“普查”或“抽样调查”)
    22、(4分)将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________
    23、(4分)若关于 y 的一元二次方程 y2﹣4y+k+3=﹣2y+4 有实根,则 k 的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)分解因式:
    (1)x(x+y)(x-y)-x(x+y)2
    (2)(x-1)2+2(1-x)•y+y2
    25、(10分)下表是随机抽取的某公司部分员工的月收入资料.
    (1)请计算样本的平均数和中位数;
    (2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平。
    26、(12分)如图,在中,AB=2AD,DE平分∠ADC,交AB于点E,交CB的延长线于点F,EG∥AD交DC于点G.
    ⑴求证:四边形AEGD为菱形;
    ⑵若,AD=2,求DF的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.
    2、C
    【解析】
    先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8-x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x的值,进而得出DE的长.
    【详解】
    解:∵Rt△DC′B由Rt△DBC翻折而成,
    ∴CD=C′D=AB=8,∠C=∠C′=90°,
    设DE=x,则AE=8-x,
    ∵∠A=∠C′=90°,∠AEB=∠DEC′,
    ∴∠ABE=∠C′DE,
    在Rt△ABE与Rt△C′DE中,
    ∴Rt△ABE≌Rt△C′DE(ASA),
    ∴BE=DE=x,
    在Rt△ABE中,AB2+AE2=BE2,
    ∴42+(8-x)2=x2,
    解得:x=1,
    ∴DE的长为1.
    故选C.
    本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.
    3、C
    【解析】
    试题解析:∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,AB=DC
    ∴△ADE∽△FCE
    ∴AD:FC=AE:FE=DE:CE
    ∵AD=3FC
    ∴AD:FC=3:1
    ∴FC:FB=1:4,故A错误;
    ∴CE:CD=1:4,故B错误;
    ∴CE:AB=CE:CD=1:4,故C正确;
    ∴AE:AF=3:4,故D错误.
    故选C.
    4、B
    【解析】
    根据平行四边形的性质逐一进行分析即可得.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB//CD,AB=CD,AD//BC,故C选项正确,不符合题意;
    ∵AB//CD,
    ∴∠1=∠2,故A选项正确,不符合题意;
    ∵AD//BC,
    ∴∠BAD+∠ABC=180°,故D选项正确,不符合题意;
    无法得到AB⊥AC,故B选项错误,符合题意,
    故选B.
    本题考查了平行四边形的性质,熟练掌握平行四边形的性质定理是解题的关键.
    5、A
    【解析】
    根据一次函数的性质进行判断即可得答案.
    【详解】
    解:A、当x=2时,y=2+1=3,图象必经过点(2,3),故A正确;
    B、k=1>0,y随x的增大而增大,故B错误;
    C、k=1>0,b=1>0,图象经过第一、二、三象限,故C错误;
    D、由A正确,故D说法错误,
    故选A.
    本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.
    6、B
    【解析】
    x1<x2时,有y1>y2,说明y随x的最大而减小,即可求解.
    【详解】
    时,有,说明随的最大而减小,
    则,即,
    故选.
    本题考查的是一次函数图象上点的坐标特征,主要分析y随x的变化情况即可.
    7、B
    【解析】
    由方程有两个不相等的实数根,
    可得,
    解得,即异号,
    当时,一次函数的图象过一三四象限,
    当时,一次函数的图象过一二四象限,故答案选B.
    8、B
    【解析】
    根据勾股定理可得AB2=AC2+BC2,再根据等腰直角三角形的性质和三角形的面积公式计算,即可得到答案.
    【详解】
    解:如图,在Rt△ABC中,由勾股定理,得:AB2=AC2+BC2,
    ∵△ABF、△BEC、△ADC都是等腰直角三角形,
    ∴S1=AF2=AB2,S2=EC2=BC2,S3=AD2=AC2,
    ∴S2+S3=BC2+AC2=(BC2+AC2)=AB2,
    ∴S2+S3=S1.
    故选:B.
    本题考查了等腰直角三角形的性质和勾股定理以及三角形的面积等知识,属于基本题型,熟练掌握勾股定理和等腰直角三角形的性质是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.
    【详解】
    解:∵AC⊥BC,AB=CD=10,AD=6,
    ∴AC===8,
    ∵▱ABCD的对角线AC与BD相交于点O,
    ∴BO=DO,AO=CO=AC=4,
    ∴OD===2 .
    ∴BD=4.
    故答案为:4.
    本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.
    10、
    【解析】
    根据不等式性质:不等式两边同时减去一个数,不等号不变,即可得到答案.
    【详解】
    解:∵,

    ∴,
    即:.
    故答案为:.
    本题考查了不等式的性质,熟练掌握不等式两边同时减去一个数,不等号不变是本题解题的关键.
    11、
    【解析】
    结合正方形的性质结合直线的解析式可得出:,,,,结合三角形的面积公式即可得出:,,,,根据面积的变化可找出变化规律“为正整数”,依此规律即可得出结论.
    【详解】
    解:令一次函数中,则,
    点的坐标为,.
    四边形为正整数均为正方形,
    ,,,.
    令一次函数中,则,
    即,


    轴,

    ,,,.
    ,,,,
    为正整数.
    故答案为:.
    本题考查一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,解题关键在于找到规律,此题属规律性题目,比较复杂.
    12、
    【解析】
    根据二次根式的性质化简即可.
    【详解】

    故答案为.
    本题考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.
    13、1
    【解析】
    首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.
    【详解】
    ∵两组数据:3,a,8,5与a,1,b的平均数都是1,
    ∴,
    解得,
    若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,
    一共7个数,第四个数是1,所以这组数据的中位数是1.
    故答案为1.
    本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见试题解析;(2)1.
    【解析】
    试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
    试题解析:(1)∵AB=DC,∴AC=DB,
    在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
    ∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
    ∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
    ∴当BE=1时,四边形BFCE是菱形,
    故答案为1.
    【考点】
    平行四边形的判定;菱形的判定.
    15、
    【解析】
    根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,求出平行四边形的面积,然后再观察发现规律进行解答.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AO=CO,BO=DO,DC∥AB,DC=AB,
    ∴S△ADC=S△ABC=S矩形ABCD=×20=10,
    ∴S△AOB=S△BCO=S△ABC=×10=5,
    ∴S△ABO1=S△AOB=×5=,
    ∴S△ABO2=S△ABO1=,
    S△ABO3=S△ABO2=,
    S△ABO4=S△ABO3=,
    ∴S平行四边形AO4C5B=2S△ABO4=2×=,
    ∴平行四边形的面积为:,
    故答案为:,.
    本题考查了三角形的面积,矩形的性质,平行四边形的性质的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.
    16、(3,2 )
    【解析】
    作辅助线,构建全等三角形,证明,得,由中点得,根据直角三角形30度角的性质和勾股定理得:,,所以,证明,根据菱形的对角线互相垂直平分得:的长,从而得的长,可得结论.
    【详解】
    解:过作于,交的延长线于,连接、,交于点,
    四边形是菱形,


    ,,




    中,,

    ,,

    四边形是菱形,
    ,,,


    ,,
    四边形为矩形,
    ,,
    ,,,


    四边形是平行四边形,



    ,,
    故答案为:,.
    本题考查坐标与图形的性质、菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    17、(1);(2).
    【解析】
    (1)原式提取公因式,再利用平方差公式分解即可;
    (2)原式提取公因式即可.
    【详解】
    解:(1)原式
    (2)原式
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.
    18、(1)∠ADE=50°;(2)①CD=2DF;见解析;②见解析.
    【解析】
    (1)利用角平分线得出∠ACB=2∠BCE=50°,再利用两直线平行,同位角相等即可得出结论;
    (2)先判断出四边形BEDF是平行四边形,进而得出DE=2DF,再利用角平分线及平行线得出DE=CD,即可得出结论;
    (3)先利用倍长中线法得出NG=NP,∠EGN=∠DPN,再用直角三角形的中线得出∠EGN=∠EBN,再构造出菱形判断出∠BEN=∠BHN,即可得出结。
    【详解】
    (1)∵CE平分∠ACB交AB于E点,
    ∴∠ACB=2∠BCE,
    ∵∠BCE=25°,
    ∴∠ACB=50°,
    ∵DE∥BC,
    ∴∠ADE=∠ACB=50°;
    (2)①∵DE∥BC,DF∥AB,
    ∴四边形BEDF是平行四边形,
    ∴DE=BF,DF=BE,
    ∵BF=2BE,
    ∴DE=2DF,
    ∵CE平分∠ACB交AB于E点,
    ∴∠BCE=∠ACE,
    ∵DE∥BC,
    ∴∠DEC=∠BCE,
    ∴∠DEC=∠DCE,
    ∴CD=DE,
    ∵DE=2DF,
    ∴CD=2DF;
    (3)如图,
    延长PN交AB于G,
    ∵DF∥AB,
    ∴∠EGN=∠DPN,
    ∵∠ENG=∠DNP,
    ∵点N是DE中点,
    ∴EN=DN,
    ∴△ENG≌△DNP(AAS),
    ∴∠EGN=∠DPN,GN=PN,
    ∵AB⊥BP,
    ∴∠ABP=90°,
    ∴BN=GN,
    ∴∠EGN=∠EBN,
    ∵DE=2EN,DE=2BE,
    ∴EN=BE,
    ∴∠ENB=∠EBN=∠EGN=∠DPN,
    过点N作NH∥BE交BC于H,
    ∵BE∥DF,
    ∴NH∥DF,
    ∴∠PNH=∠DPN,
    ∵EN∥BH,NH∥BE,
    ∴四边形BENH是平行四边形,
    ∵BE=EN,
    ∴▱BENH是菱形,
    ∵BE是菱形对角线,
    ∴∠BNH=∠BNE=DPN,
    ∴∠ENP=∠BNE+∠BNH+∠PNH=∠DPN+∠DPN+∠DPN=3∠DPN.
    此题是三角形综合题,主要考查了角平分线的定义,平行线的性质,平行四边形的判定和性质,菱形的判定和性质,全等三角形的判定和性质,直角三角形的性质,构造全等三角形和菱形是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、等腰直角
    【解析】
    根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.
    【详解】

    ∴是等腰三角形

    ∴是直角三角形
    ∴该三角形是等腰直角三角形
    故答案为:等腰直角.
    本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.
    20、-2
    【解析】
    将点A代入反比例函数解出k值,再将B的坐标代入已知反比例函数解析式,即可求得m的值.
    【详解】
    解:∵反比例函数y=,它的图象经过A(-2,1),
    ∴1=,
    ∴k=-2
    ∴y=,
    将B点坐标代入反比例函数得,
    m=,
    ∴m=-2,
    故答案为-2.
    本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    21、抽样调查
    【解析】
    了解一批节能灯的使用寿命,对灯泡进行调查具有破坏性,故不宜采用普查,应采用抽样调查.
    【详解】
    了解一批节能灯的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批节能灯全部用于实验。所以填抽样调查。
    本题考查了抽样调查的定义,掌握抽样调查和普查的定义是解决本题的关键.
    22、0.3
    【解析】
    根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.
    【详解】
    解:∵第1、2、3、4组的频数分别是2、8、10、15,
    ∴50-2-8-10-15=15
    ∴15÷50=0.3
    故答案为0.3.
    此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.
    23、
    【解析】
    首先把方程化为一般形式,再根据方程有实根可得△=,再代入a、b、c的值再解不等式即可.
    【详解】
    解:y2﹣4y+k+3=﹣2y+4,化为一般式得:,
    再根据方程有实根可得:△=,则
    ,解得:;
    ∴则 k 的取值范围是:.
    故答案为:.
    本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
    二、解答题(本大题共3个小题,共30分)
    24、(1)-2xy(x+y);(2)(x-1-y)2
    【解析】
    (1)提公因式x(x+y),合并即可;
    (2)利用完全平方式进行分解.
    【详解】
    (1)原式=x(x+y)[(x-y)-(x+y)]
    =-2xy(x+y)
    (2)原式=(x-1)2-2(x-1)y+y2
    =(x-1-y)2
    本题考查的知识点是提取公因式法因式分解和完全平方式,解题关键是求出多项式里各项的公因式,提公因式.
    25、(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.
    【解析】
    (1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;
    (2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入,乙推断比较科学合理.
    【详解】
    解:(1)样本的平均数为:

    =6150元;
    这组数据共有26个,第13、14个数据分别是3000、3400,
    所以样本的中位数为:3200元;
    (2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.
    故答案为:(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.
    本题考查计算平均数和中位数,并用中位数和平均数说明具体问题.
    26、(1)证明见解析;(2)4.
    【解析】
    (1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;
    (2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,AH=AG=1,由直角三角形的性质得出DH=AH=,得出DE=2DH=2,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴∠AED=∠GDE,
    ∵AE∥DG,EG∥AD,
    ∴四边形AEGD是平行四边形,
    ∵DE平分∠ADC,
    ∴∠ADE=∠GDE,
    ∴∠ADE=∠AED,
    ∴AD=AE,
    ∴四边形AEGD为菱形;
    (2)解:连接AG交DF于H,如图所示:
    ∵四边形AEGD为菱形,
    ∴AD=DG,AG⊥DE,
    ∵∠ADC=60°,AD=2,
    ∴△ADG是等边三角形,AG=AD=2,
    ∴∠ADH=30°,AH=AG=1,
    ∴DH=AH=,
    ∴DE=2DH=2,
    ∵AD=AE,AB=2AD,AD∥CF,EG∥AD,
    ∴DG=BE,∠EDG=∠FEB,∠DGE=∠C=∠EBF,
    在△DGE和△EBF中,
    ∴△DGE≌△EBF(ASA),
    ∴DE=EF,
    ∴DF=2DE=4.
    本题考查菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年江苏省金坛市尧塘,河头,水北中学九上数学开学调研模拟试题【含答案】:

    这是一份2024年江苏省金坛市尧塘,河头,水北中学九上数学开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省常州市金坛区白塔中学数学九上开学综合测试试题【含答案】:

    这是一份2024-2025学年江苏省常州市金坛区白塔中学数学九上开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省常州市金坛区水北中学九年级数学第一学期期末学业质量监测试题含答案:

    这是一份2023-2024学年江苏省常州市金坛区水北中学九年级数学第一学期期末学业质量监测试题含答案,共9页。试卷主要包含了的值等于等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map