![吉林省辽源市2024年九年级数学第一学期开学教学质量检测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16281828/0-1729644052959/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![吉林省辽源市2024年九年级数学第一学期开学教学质量检测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16281828/0-1729644052985/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![吉林省辽源市2024年九年级数学第一学期开学教学质量检测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16281828/0-1729644053004/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
吉林省辽源市2024年九年级数学第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若bk>0,则直线y=kx-b一定通过( )
A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限
2、(4分)在下列条件中,能判定四边形为平行四边形的是( )
A.两组对边分别平行B.一组对边平行且另一组对边相等
C.两组邻边相等D.对角线互相垂直
3、(4分)函数y=x和在同一直角坐标系中的图象大致是( )
A.B.C.D.
4、(4分)如图,在中,,,,,则的长为( )
A.6B.8C.9D.10
5、(4分)如图,被笑脸盖住的点的坐标可能是( )
A.B.C.D.
6、(4分)下列函数中是一次函数的为( )
A.y=8x2B.y=x+1C.y=D.y=
7、(4分)有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为( )
A.1 B.2 C.3 D.4
8、(4分)已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )
A.1或-5B.-5或3C.-3或1D.-3或5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.
10、(4分)当x=2时,二次根式的值为________.
11、(4分)如图,,要使四边形ABCD成为平行四边形还需要添加的条件是______只需写出一个即可
12、(4分)如图,点E是正方形ABCD边AD的中点,连接CE,过点A作AF⊥CE交CE的延长线于点F,过点D作DG⊥CF交CE于点G,已知AD=2,则线段AF的长是_____.
13、(4分)如图,在正方形的外侧,作等边,则的度数是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:
(1)已知点C(1,3),D(-4,-4),E(5,-),其中是平面直角坐标系中的巧点的是______;
(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;
(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.
15、(8分)解方程:x2﹣6x+8=1.
16、(8分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分)
(1)两个班的平均得分分别是多少;
(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.
17、(10分)如图,在□ABCD中,点E,F分别在边AB,DC上,且AE=CF,连接DE,BF.
求证:DE=BF.
18、(10分)计算:
(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1
(2)(2a2+ab﹣2b2)(﹣ab)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.
20、(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).
21、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.
22、(4分)已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.
23、(4分) “如果 a=b,那么 a2=b2”,写出此命题的逆命题_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)分别按下列要求解答:
(1)将先向左平移个单位,再下移个单位,经过两次变换得到,画出,点的坐标为__________.
(2)将绕顺时针旋转度得到,画出,则点坐标为__________.
(3)在(2)的条件下,求移动的路径长.
25、(10分)感知:如图①,在正方形中,点在对角线上(不与点、重合),连结、,过点作,交边于点.易知,进而证出.
探究:如图②,点在射线上(不与点、重合),连结、,过点作,交的延长线于点.求证:.
应用:如图②,若,,则四边形的面积为________.
26、(12分)4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.
(1)求甲、乙两种图书的单价各是多少元?
(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据题意讨论k和b的正负情况,然后可得出直线y=kx-b一定通过哪两个象限.
【详解】
解:由bk>0,知,①b>0,k>0;②b<0,k<0;
①b>0,k>0时,直线经过第一、三、四象限,
②b<0,k<0时,直线经过第一、二、四象限.
综上可得,函数一定经过一、四象限.
故选:D.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
2、A
【解析】
根据平行四边形的判定定理逐个判断即可.
【详解】
A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;
B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,故本选项不符合题意;
C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;
D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;
故选A.
本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.
3、D
【解析】
分析:根据正比例函数和一次函数的图象与系数的关系进行判断即可.
详解:根据正比例函数和反比例函数的性质可得的图象经过一、三象限,图象在二、四象限,符合条件的只有选项D,
故选D.
点睛:考查正比例函数和反比例函数图象与系数的关系,熟练掌握它们的图象与性质是解题的关键.
4、D
【解析】
由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=DE,再根据CF=BC﹣BF=DE=6,即可求出DE的长度.
【详解】
解:∵DE∥BC,
∴∠ADE=∠B.
∵∠ADE=∠EFC,
∴∠B=∠EFC,
∴BD∥EF,
∵DE∥BF,
∴四边形BDEF为平行四边形,
∴DE=BF.
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴BC=DE,
∴CF=BC﹣BF=DE=6,
∴DE=1.
故选:D.
本题考查了相似三角形的判定与性质、平行线的性质以及平行四边形的判定与性质,根据相似三角形的性质找出BC=DE是解题的关键.
5、C
【解析】
判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.
【详解】
由图可知,被笑脸盖住的点在第三象限,
(5,2),(−5,2),(−5,−2),(5,−2)四个点只有(−5,−2)在第三象限.
故选:C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
6、B
【解析】
根据一次函数的定义逐一分析即可.
【详解】
解:A、自变量次数不为1,故不为一次函数;
B、是一次函数;
C、为反比例函数;
D、分母中含有未知数不是一次函数.
所以B选项是正确的.
本土主要考查一次函数的定义:一次函数的定义条件是函数形式为y=kx+b(k、b为常数,k≠0,自变量次数为1).
7、C
【解析】因为72+242=252;122+162=202;92+402=412;42+62≠82;(32)2+(42)2≠(52)2,所以能组成直角三角形的个数为3个.
故选C.
本题主要考查了勾股定理的逆定理,如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,已知一个三角形三边的长,常用勾股定理的逆定理判断这个三角形是否是直角三角形.
8、D
【解析】
根据函数二次函数(为常数)可得函数对称轴为,由自变量的值满足时,其对应的函数值的最小值为4,再对h的大小进行分类讨论,当时,自变量的值满足时,y随x的增大而减小,当x=3时,y取得最小值为
,可解得h的值,并且注意检验h要满足;当时,自变量的值满足时,y随x的增大而增大,当时,y取得最小值为,可解得h的值,并且注意检验h要满足,即可得出答案.
【详解】
解:∵二次函数(为常数),
∴函数对称轴为;
∵函数的二次项系数a=1,
∴函数开口向上,
当时,的值满足在对称轴的左侧,y随x的增大而减小,
∴当x=3时,y取得最小值,此时,解得:
∵,
∴舍去,;
当时,的值满足在对称轴的右侧,y随x的增大而增大,
∴当时,y取得最小值,此时,解得:
∵,
∴舍去,;
综上所述,或;
故答案为D.
本题考查二次函数的最值与函数的增减性之间的关系,求出函数的对称轴,并且分析函数的增减性是做题关键.在分类讨论的时候一定要注意分类中的h是有取值范围的,在取值范围内的结果才是最终的正确结果.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、+1.
【解析】
分析:根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.
详解:∵阴影部分的面积与正方形ABCD的面积之比为2:1,
∴阴影部分的面积为×9=6,
∴空白部分的面积为9-6=1,
由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,
∴△BCG的面积与四边形DEGF的面积相等,均为×1=,
设BG=a,CG=b,则ab=,
又∵a2+b2=12,
∴a2+2ab+b2=9+6=15,
即(a+b)2=15,
∴a+b=,即BG+CG=,
∴△BCG的周长=+1,
故答案为+1.
点睛:此题考查了全等三角形的判定与性质、正方形的性质以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.
10、3
【解析】
【分析】把x=2代入二次根式进行计算即可得.
【详解】把x=2代入得,
==3,
故答案为:3.
【点睛】本题考查了二次根式的值,准确计算是解题的关键.
11、或
【解析】
已知,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组对边分别平行的四边形是平行四边形来判定.
【详解】
在四边形ABCD中,,
可添加的条件是:,
四边形ABCD是平行四边形一组对边平行且相等的四边形是平行四边形.
在四边形ABCD中,,
可添加的条件是:,
四边形ABCD是平行四边形两组对边分别的四边形是平行四边形.
故答案为或.(答案不唯一,只要符合题意即可)
本题主要考查了平行四边形的判定方法,常用的平行四边形的判定方法有:两组对边分别平行的四边形是平行四边形两组对边分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形.
12、1
【解析】
先利用正方形的性质得到∠ADC=90°,CD=AD=1 ,再利用E点为AD的中点得到AE=DE=,则利用勾股定理可计算出CE=5,然后证明Rt△AEF∽Rt△CED,从而利用相似比可计算出AF的长.
【详解】
∵四边形ABCD为正方形,
∴∠ADC=90°,CD=AD=1,
∵点E是正方形ABCD边AD的中点,
∴AE=DE= ,
在Rt△CDE中,
∵AF⊥CE,
∴∠F=90°,
∵∠AEF=∠CED,
∴Rt△AEF∽Rt△CED,
∴,即
∴AF=1.
故答案为1.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了相似三角形的判定与性质.
13、
【解析】
先求出的度数,即可求出.
【详解】
解:由题意可得,,
故答案为:
本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)D和E;(2)m=,k=25;(3)N的坐标为(-6,-3)或(3,6).
【解析】
(1)利用矩形的周长公式、面积公式结合巧点的定义,即可找出点D,E是巧点;
(2)利用巧点的定义可得出关于m的一元一次方程,解之可得出m的值,再利用反比例函数图象上点的坐标特征,可求出k值;
(3)设N(x,x+3),根据巧点的定义得到2(|x|+|x+3|)=|x||x+3|,分三种情况讨论即可求解.
【详解】
(1)∵(4+4)×2=4×4,(5+)×2=5×,(1+3)×2≠1×3,
∴点D和点E是巧点,
故答案为:D和E;
(2)∵点M(m,10)(m>0),
∴矩形的周长=2(m+10),面积=10m.
∵点M是巧点,
∴2(m+10)=10m,解得:m=,
∴点M(,10).
∵点M在双曲线y=上,
∴k=×10=25;
(3)设N(x,x+3),则2(|x|+|x+3|)=|x||x+3|,
当x≤-3时,化简得:x2+7x+6=0,解得:x=-6或x=-1(舍去);
当-3<x<0时,化简得:x2+3x+6=0,无实根;
当x≥0时,化简得:x2-x-6=0,解得:x=3或x=-2(舍去),
综上,点N的坐标为(-6,-3)或(3,6).
本题主要考查一次函数图象以及反比例函数图象上点的坐标特征、矩形的周长及面积以及解一元二次方程,理解巧点的定义,分x≤-3、-3<x<0及x≥0三种情况,求出N点的坐标,是解题的关键.
15、x1=2 x2=2.
【解析】
应用因式分解法解答即可.
【详解】
解:x2﹣6x+8=1
(x﹣2)(x﹣2)=1,
∴x﹣2=1或x﹣2=1,
∴x1=2 x2=2.
本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.
16、(1)一班的平均得分90,二班的平均得分90(2)一班的卫生成绩高.
【解析】
(1)、(2)利用平均数的计算方法,先求出所有数据的和,然后除以数据的总个数即可求出答案.
【详解】
解:(1)一班的平均得分=(95+85+90)÷3=90,
二班的平均得分=(90+95+85)÷3=90,
(2)一班的加权平均成绩=85×25%+90×35%+95×40%=90.75,
二班的加权平均成绩=95×25%+85×35%+90×40%=89.5,
所以一班的卫生成绩高.
本题考查的是平均数和加权平均数的求法,关键是利用平均数和加权平均数的计算方法解答.
17、详见解析
【解析】
欲证明,只要证明≌即可.由四边形ABCD是平行四边形,
可证,,从而根据“SAS”可证明≌.
【详解】
证明:四边形ABCD是平行四边形,
,,
在和中,
,
≌,
.
本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
18、 (1)2;(2)−a1b−a2b2+ab1.
【解析】
(1)根据0次幂和负整数指数幂,即可解答.
(2)根据单项式乘以多项式,即可解答.
【详解】
(1)(1.12﹣π)0+(﹣)﹣2﹣2×2﹣1
=1+2-2×
=1+2-1
=2.
(2)(2a2+ab-2b2)(-ab)
=−a1b−a2b2+ab1.
本题考查了单项式乘以多项式,解决本题的关键是熟记单项式乘以多项式的法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC
所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1
故答案为:1.
本题考查三角形的中位线定理.
20、AC⊥BC或∠AOB=90°或AB=BC(填一个即可).
【解析】
试题分析:根据菱形的判定定理,已知平行四边形ABCD,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.
考点:菱形的判定.
21、.
【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.
【详解】
如图,作AE⊥OB于E,A′H⊥OB于H.
∵A(1,),
∴OE=1,AE=,
∴OA==2,
∵△OAB是等边三角形,
∴∠AOB=60°,
∵∠AOA′=15°,
∴∠A′OH=60°﹣15°=45°,
∵OA′=OA=2,H⊥OH,
∴A′H=OH=,
∴(,),
故答案为:(,).
此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.
22、
【解析】
分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.
详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,
∵菱形的对角线互相垂直平分,
根据勾股定理可得菱形的边长=cm.
故答案为.
点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.
23、如果a2=b2,那么a=b.
【解析】
把原命题的题设与结论交换即可得解.
【详解】
“如果a=b,那么a2=b2”的逆命题是“如果a2=b2,那么a=b”
故答案为:如果a2=b2,那么a=b.
此题考查命题与定理,解题关键在于掌握其定义
二、解答题(本大题共3个小题,共30分)
24、(1)(-4,5);(2)(3,-6);(3)
【解析】
(1)分别作出A,B,C的对应点A1,B1,C1即可;
(2)分别作出A,B,C的对应点A2,B2,C2即可;
(3)利用弧长公式计算即可.
【详解】
解:(1)△A1B1C1如图所示,点A1的坐标为(-4,5).
故答案为(-4,5).
(2)△A2B2C2如图所示.C2(3,-6),
故答案为(3,-6)
(3)点A移动的路径长=
本题考查作图——旋转变换,轨迹,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
25、探究:见解析;应用:
【解析】
探究:由四边形是正方形易证.可得,,由及.可得. 可得即可证;
应用:连结,可得三角形DEF是等腰三角形,利用勾股定理,分别求DF、FC的长度,再别求和的面积即可.
【详解】
探究:四边形是正方形,
,.
.
又,
.
,.
,
.
.
又.
.
.
.
应用: (提示:连结,分别求和的面积)
连结
由=2,∠FED=90°由勾股定理可得:FD= 可得:
∵CD=1,∠FCD=90°由勾股定理可得:FC= 可得:
∴
本题考查了正方形的性质、三角形全等以及勾股定理的运用,灵活运用正方形性质和利用勾股定理计算长度是解题的关键.
26、(1)甲种图书的单价为30元/本,乙种图书的单价为1元/本;(2)乙种图书最多能买2本.
【解析】
(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,根据“用180元购买乙种图书比要购买甲种图书少2本”列分式方程即可求出结论;
(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,根据“购买图书的总费用不超过5000元”列出不等式即可得出结论.
【详解】
解:(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,
依题意,得:-=2,
解得:x=30,
经检验,x=30是所列分式方程的解,且符合题意,
∴1.5x=1.
答:甲种图书的单价为30元/本,乙种图书的单价为1元/本.
(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,
依题意,得:30(150-m)+1m≤5000,
解得:m≤.
∵m为整数,
∴m的最大值为2.
答:乙种图书最多能买2本.
此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
题号
一
二
三
四
五
总分
得分
门窗
桌椅
地面
一班
85
90
95
二班
95
85
90
吉林省松原市前郭县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份吉林省松原市前郭县2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省靖宇县2025届九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份吉林省靖宇县2025届九年级数学第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省辽源市东丰县小四平镇中学2025届数学九年级第一学期开学达标测试试题【含答案】: 这是一份吉林省辽源市东丰县小四平镇中学2025届数学九年级第一学期开学达标测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。