![湖南长沙明德旗舰2025届九上数学开学经典模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16281775/0-1729642660524/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南长沙明德旗舰2025届九上数学开学经典模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16281775/0-1729642660541/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南长沙明德旗舰2025届九上数学开学经典模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16281775/0-1729642660557/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖南长沙明德旗舰2025届九上数学开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为( )
A.(3,1)B.(3,)C.(3,)D.(3,2)
2、(4分)多项式x2﹣1与多项式x2﹣2x+1的公因式是( )
A.x﹣1B.x+1C.x2﹣1D.(x﹣1)2
3、(4分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
A.平均数不变,方差不变B.平均数不变,方差变大
C.平均数不变,方差变小D.平均数变小,方差不变
4、(4分)如图,在中,已知,,,则的长为( )
A.4B.5C.6D.7
5、(4分)如图在5×5的正方形网格中(每个小正方形的边长为1个单位长度),格点上有A、B、C、E五个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接( )
A.AEB.ABC.ADD.BE
6、(4分)如果不等式组的解集是,那么的取值范围是( )
A.B.C.D.
7、(4分)下列多项式中能用完全平方公式分解的是
A.B.C.D.
8、(4分)定义,当时,,当<时,;已知函数,则该函数的最大值是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,1,1,10,11,1.则这组数据的众数是____________.
10、(4分)已知x+y=6,xy=3,则x2y+xy2的值为_____.
11、(4分)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打七折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的函数关系如图所示,那么图中a的值是_______.
12、(4分)如图,矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD、BC于点E. F,连接CE,则△DCE的面积为___.
13、(4分)解分式方程+=时,设=y,则原方程化为关于y的整式方程是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,是边上的高,的平分线交于点,于点,请判断四边形的形状,并证明你的结论.
15、(8分)如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.
(1)求这两个函数的表达式;
(2)求△AOB的面积S.
16、(8分)如图,在直角坐标系中,A(﹣1,2),B(﹣4,﹣2).
(1)分别作点A,B关于原点的对称点C,D,并写出点C,点D的坐标;
(2)依次连接AB,BC,CD,DA,并证明四边形ABCD是平行四边形.
17、(10分)如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;
(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.
18、(10分)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元
(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;
(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点和都在第三象限的角平分线上,则_______.
20、(4分)已知a=b﹣2,则代数式的值为_____.
21、(4分)点P的坐标为,则点P到x轴的距离是________,点P到y轴的距离是________.
22、(4分)计算的结果是______.
23、(4分)在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.
(1)小明一共调查了多少户家庭?
(2)求所调查家庭3月份用水量的众数、中位数和平均数;
(3)若该小区有800户居民,请你估计这个小区3月份的总用水量是多少吨?
25、(10分)如图,在平面内,菱形 ABCD 的对角线相交于点 O,点 O 又是菱形B1A1OC1的一个顶点,菱形 ABCD≌菱形 B1A1OC1,AB=BD=1.菱形B1A1OC1 绕点 O 转动,求两个菱形重叠部分面积的取值范围,请说明理由.
26、(12分)探究:如图,在正方形中,点,分别为边,上的动点,且.
(1)如果将绕点顺时针方向旋转.请你画出图形(旋转后的辅助线).你能够得出关于,,的一个结论是________.
(2)如果点,分别运动到,的延长线上,如图,请你能够得出关于,,的一个结论是________.
(3)变式:如图,将题目改为“在四边形中,,且,点,分别为边,上的动点,且”,请你猜想关于,,有什么关系?并验证你的猜想.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.
∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,当x=3时,y=,∴点E坐标(3,)
故选B.
考点:1矩形;2轴对称;3平面直角坐标系.
2、A
【解析】
x2-1=(x+1)(x-1),
x2-2x+1=(x-1)2,
所以公因式是:x-1,
故选A.
本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.
3、C
【解析】
解: =(160+165+170+163+1)÷5=165,S2原=, =(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.
4、B
【解析】
根据勾股定理计算即可.
【详解】
由勾股定理得:AB=.
故选B.
本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
5、C
【解析】
根据勾股定理求出AD,BE,根据算术平方根的大小比较方法解答.
【详解】
AE=4,
AB=3,
由勾股定理得AD=,3<<4,
BE==1.
故选C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
6、B
【解析】
先用含有m的代数式把原不等式组的解集表示出来,由题意不等式的解集为x>1,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出m的范围.
【详解】
解:在中
由(1)得,x>1
由(2)得,x>m
根据已知条件,不等式组解集是x>1
根据“同大取大”原则m≤1.
故选B.
本题考查一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m的范围.
7、B
【解析】
根据完全平方公式的结构特征判断即可.
【详解】
选项A、C、D都不能够用完全平方公式分解,选项B能用完全平方公式分解,即.
故选B.
本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
8、B
【解析】
根据定义,可得只有当 取得最大值,代入即可求得最大值.
【详解】
根据根据定义,可得取得最大值
则,因此可得
代入可得
所以该函数的最大值为-9
故选B.
本题只要考查新定义题,关键在于理解定义,是的函数的图象成倒V的形状,因此交点处取得最大值.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
众数是一组数据中出现次数最多的数据,有时众数可以不止一个.
【详解】
解:在这一组数据中1是出现次数最多的,故众数是1;
故答案为1.
10、1
【解析】
先提取公因式xy,整理后把已知条件直接代入计算即可.
【详解】
∵x+y=6,xy=3,
∴x2y+xy2=xy(x+y)=3×6=1.
故答案为1.
本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.
11、1.
【解析】
根据题意求出当x≥10时的函数解析式,当y=27时代入相应的函数解析式,可以求得相应的自变量a的值,本题得以解决.
【详解】
解:由题意得每本练习本的原价为:20÷10=2(元),
当x≥10时,函数的解析式为y=0.7×2(x-10)+20=1.4x+6,
当y=27时,1.4x+6=27,解得x=1,
∴a=1.
故答案为:1.
本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,根据关系式可以解答问题.
12、6
【解析】
根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算,再利用三角形面积公式解答即可.
【详解】
∵四边形ABCD是矩形,
∴CD=AB=4,AD=BC=8,
∵EO是AC的垂直平分线,
∴AE=CE,
设CE=x,则ED=AD−AE=8−x,
在Rt△CDE中,CE=CD+ED,
即x=4 +(8−x) ,
解得:x=5,
即CE的长为5,
DE=8−5=3,
所以△DCE的面积= ×3×4=6,
故答案为:6.
此题考查线段垂直平分线的性质,矩形的性质,解题关键在于得出AE=CE.
13、y2-y+1=1
【解析】
根据换元法,可得答案.
【详解】
解:设=y,则原方程化为y+-=1
两边都乘以y,得
y2-y+1=1,
故答案为:y2-y+1=1.
本题考查了解分式方程,利用换元法是解题关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
利用角平分线性质得到GE=CE,,从而得到,由两个垂直可得到,从而,即有,得到EC=CF,即有GE=CF,又,得到四边形是平行四边形,又EC=CF,即四边形为菱形
【详解】
证明:四边形是菱形
是的平分线,
四边形是平行四边形
又
平行四边形是菱形
本题主要考查平行四边形的判定、菱形的判定、全等三角形的判定与性质等知识点,本题关键在于能够先判断出四边形是平行四边形
15、(1)OA:,AB:;(2)
【解析】
(1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;
(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.
【详解】
(1)设直线OA的解析式为y=kx,
把A(3,4)代入得4=3k,解得k=,
所以直线OA的解析式为y=x;
∵A点坐标为(3,4),
∴OA==5,
∴OB=OA=5,
∴B点坐标为(0,-5),
设直线AB的解析式为y=ax+b,
把A(3,4)、B(0,-5)代入得
,解得,
∴直线AB的解析式为y=3x-5;
(2)∵A(3,4),
∴A点到y轴的距离为3,且OB=5,
∴S=×5×3=.
本题主要考查一次函数的交点问题,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.
16、(1)点C,点D的坐标分别为:(1,﹣2),(4,2);(2)见解析.
【解析】
(1)直接利用关于原点对称点的性质进而得出答案;
(2)利用平行四边形的判定方法得出答案.
【详解】
(1)解:∵A(﹣1,2),B(﹣4,﹣2),点A,B关于原点的对称点C,D,
∴点C,点D的坐标分别为:(1,﹣2),(4,2);
(2)证明:
∵AD=BC=4+1=5,
∵A(﹣1,2),B(﹣4,﹣2),C(1,﹣2),D(4,2);
∴AD∥BC,
∴四边形ABCD是平行四边形.
此题主要考查了旋转变换以及平行四边形的判定,正确把握平行四边形的判定方法是解题关键.
17、(1)旋转中心坐标是,旋转角是;(2)见解析;(3)见解析
【解析】
(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;
(2)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;
(3)利用面积,根据正方形CC1C2C3的面积等于正方形AA1A2B的面积加上△ABC的面积的4倍,列式计算即可得证.
【详解】
(1)旋转中心坐标是,旋转角是
(2)画出图形如图所示.
(3)由旋转的过程可知,四边形和四边形是正方形.
∵,
∴,
,
∴.
即中,,
本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,勾股定理的证明,熟练掌握网格结构,找出对应点的位置是解题的关键.
18、(1);(2)公路运输方式运送的牛奶多,铁路运输方式所需用较少.
【解析】
分析:(1)由总价=单价×数量+其他费用,就可以得出y与x之间的函数关系式;
(2)将y=1500或x=1500分别代入(1)的解析式就可以求出结论;
详解:(1),
(2) 解得:,
解得:.
∵ 3000>2500,
∴ 公路运输方式运送的牛奶多,
∴ (元),
(元).
∵ 1050>900,
∴ 铁路运输方式所需费用较少.
点睛:本题考查了单价×数量=总价的运用,由函数值求自变量的值及由自变量的值求函数值的运用,有理数大小比较的运用,分类讨论思想的运用,解答时求出函数的解析式是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-6
【解析】
本题应先根据题意得出第三象限的角平分线的函数表达式,在根据、的坐标得出、的值,代入原式即可.
【详解】
解:点A(-2,x)和都在第三象限的角平分线上,
,,
.
故答案为:.
本题考查了第三象限的角平分线上的点的坐标特点及代数式求值,注意第三象限的角平分线上的点的横纵坐标相等.
20、1
【解析】
由已知等式得出,代入到原式计算可得答案.
【详解】
解:,
故答案为:1.
本题主要考查了完全平方的运算,其中熟练掌握完全平方公式是解题的关键.
21、2 1
【解析】
根据在平面直角坐标系中,任何一点到x轴的距离等于这一点纵坐标的绝对值,到y轴的距离等于这一点横坐标的绝对值,即可解答本题.
【详解】
解:点P的坐标为,则点P到x轴的距离是2,点P到y轴的距离是1.
故答案为2;1.
本题考查在平面直角坐标系中,点到坐标轴的距离,比较简单.
22、1
【解析】
利用二次根式的计算法则正确计算即可.
【详解】
解:
=
=
=1
故答案为:1.
本题考查的是二次根式的混合运算,掌握计算法则是解题关键.
23、3<x<1
【解析】
根据平行四边形的性质易知OA=7,OB=4,根据三角形三边关系确定范围.
【详解】
∵ABCD是平行四边形,AC=14,BD=8,
∴OA=AC=7,OB=BD=4,
∴7−4<x<7+4,即3<x<1.
故答案为:3<x<1.
此题考查了平行四边形的性质及三角形三边关系定理,有关“对角线范围”的题,应联系“三角形两边之和、差与第三边关系”知识点来解决.
二、解答题(本大题共3个小题,共30分)
24、(1)20户;(2)众数是4吨,位数是6吨,均数是4.5吨;(3)估计这个小区3月份的总用水量是3600吨.
【解析】
分析:(1)、将各组的人数进行相加得出答案;(2)、根据众数、中位数和平均数的计算法则进行计算即可;(3)、利用平均数乘以800得出答案.
详解:(1)、小明一共调查的户数是:1+1+3+6+4+2+2+1=20(户);
(2)、在这组数据中,4出现了6次,出现的次数最多,∴这组数据的众数是4吨;
∵将这组数据按从小到大的顺序排列,其中出于中间的两个数都是6,有=6,
∴这组数据的中位数是6吨; 这组数据的平均数是:=4.5(吨);
(3)据题意得:800×4.5=3600(吨),
答:估计这个小区3月份的总用水量是3600吨.
点睛:本题主要考查的是众数、平均数、中位数的计算以及利用样本推算总量,属于基础题型.理解计算法则是解题的关键.
25、≤s .
【解析】
分别求出重叠部分面积的最大值,最小值即可解决问题
【详解】
如图1中,∵四边形ABCD是菱形,
∴AB=AD,∵AB=BD,
∴AB=BD=AD=1,
∴△ABD是等边三角形,
当AE=EB,AF=FD时,重叠部分的面积最大,最大面积=S△ABD=××12=,
如图2中,当OA1与BC交于点E,OC1交AB与F时,作OG⊥AB与G,OH⊥BC于H.
易证△OGF≌△OHE,
∴S四边形BEOF=S四边形OGBH=×=,
观察图象图象可知,在旋转过程中,重叠部分是三角形时,当点E与B重合,此时三角形的面积最小为,
综上所述,重叠部分的面积S的范围为≤s≤.
本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
声明:本试题解析著作权属所有,未经书面同意,不得复制发布
26、(1)EF=BE+DF,画图如图所示;(2)BE= DF+EF;(3)EF=BE+DF,理由见解析
【解析】
(1)画出图形,证明△AEF≌△AEF′,得到EF=EF′,根据EF′=BE+BF′=BE+DF得到结果;
(2)将△ADF绕点A顺时针旋转90°,证明△AEF≌△AEF′,得到EF=EF′,从而可说明BE= DF+EF;
(3)将△ADF绕点A顺时针旋转,使AD与AB重合,证明∠ABF′+∠ABE=180°,说明F′、B、E三点共线,再证明△AEF≌△AEF′,得出EF=EF′,从而可说明EF=BE+DF.
【详解】
解:(1)画图如图所示,旋转后点F的对应点为F′,AD与AB重合,
∵∠EAF=45°,
∴∠EAF′=∠EAF=45°,
在△AEF和△AEF′中,
,
∴△AEF≌△AEF′(SAS),
∴EF=EF′,
又∵EF′=BE+BF′=BE+DF,
∴EF=BE+DF,
故答案为:EF=BE+DF;
(2)将△ADF绕点A顺时针旋转90°,旋转后点F的对应点为F′,AD与AB重合,
∵∠EAF=45°,
∴∠F′AE=45°,AF=AF′,
在△AEF和△AEF′中,
,
∴△AEF≌△AEF′(SAS),
∴EF=EF′,
而DF=BF′,
∴BE=BF′+EF′=DF+EF,
故答案为:BE= DF+EF;
(3)EF=BE+DF,
理由是:如图,将△ADF绕点A顺时针旋转,使AD与AB重合,
则△ADF≌△ABF′,
∴∠BAF′=∠DAF,AF=AF′,BF′=DF,∠ABF′=∠D,
又∵∠EAF=∠BAD,
∴∠EAF=∠DAF+∠BAE=∠BAE+∠BAF′,
∴∠EAF=∠EAF′,
又∵∠ABC+∠ADC=180°,
∴∠ABF′+∠ABE=180°,
∴F′、B、E三点共线,
在△AEF和△AEF′中,
,
∴△AEF≌△AEF′(SAS),
∴EF=EF′,
又∵EF′=BE+BF′=BE+DF,
∴EF=BE+DF.
本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.
题号
一
二
三
四
五
总分
得分
湖南省长沙市明德旗舰2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】: 这是一份湖南省长沙市明德旗舰2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年湖南长沙明德旗舰数学九年级第一学期期末综合测试模拟试题含答案: 这是一份2023-2024学年湖南长沙明德旗舰数学九年级第一学期期末综合测试模拟试题含答案,共8页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
2023-2024学年湖南省长沙市明德旗舰数学九上期末考试模拟试题含答案: 这是一份2023-2024学年湖南省长沙市明德旗舰数学九上期末考试模拟试题含答案,共6页。试卷主要包含了答题时请按要求用笔,如图,空心圆柱的俯视图是,若,且,则的值是等内容,欢迎下载使用。